色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

We are aware of that surface roughness means a lot in manufacturing industry. When the concept is recalled to your mind, there must be some common textures on machined parts, such as bright mirror surface, matte, and dull polish. They are what different surface roughness embodies in macroscopic condition.

Definition of surface roughness

As is known to us, asperity of a parts surface can be profiled as a series of jagged valleys in which there are crest, through, and spacing between them.

As a concept describing surfaces microscopic structure, surface roughness in fact is the length S between these crests(or troughs, usually below 1mm) and depth Z from trough to crest shown in the following diagram.

In general, we differentiate varying surface condition according to the range of S.

S<1mm, the asperity is regarded as surface roughness,

1≤S≤10mm, it’s regarded as waviness,

S>10mm, it’s called as geometric unevenness.  

What-to-know about Surface Roughness 2

3 standards and their comparison table

In China, the standards measuring surface roughness by the 3 Indexes, (unit:mm)which are average arithmetic deviation of contour Ra, average height of unevenness Rz, and the maximum depth of the valley Ry.

In most of actual production activities, Ra is mostly applied. While in Japan Ry gets mostly used, referred as Rmax. People in European region use VDI 3400. We’ve made a comparison table of the 3 standards shown as below, 

What-to-know about Surface Roughness 3

Diagram 2. The comparison between Ra, Rmax,and VDI3400.

Formation factors of surface roughness

Surface roughness is generally formed by processing methods and other factors, such as friction between tool and part surface, plastic deformation of surface metal when chips are separated, high frequency vibration in process system, discharge pits in electrical machining, etc. Because of the difference of processing method and workpiece material, the depth, density, shape and texture of the traces left on the machined surface are different.

What-to-know about Surface Roughness 4

The Main Effect of Surface Roughness on Parts

Affect wear resistance.

The rougher the surface, the smaller the effective contact area between the surfaces, the greater the pressure, the greater the friction resistance and the faster the wear.

Affect the stability of coordination.

For clearance fit, the rougher the surface is, the easier the wear and tear will be, and the clearance will increase gradually in the working process. For interference fit, the actual effective interference will be reduced and the connection strength will be reduced because of the extrusion of micro-convex peaks during assembly.

The fatigue strength is affected.

There are large troughs on the surface of rough parts. Like sharp notches and cracks, they are sensitive to stress concentration, which affects the fatigue strength of parts.

Influencing corrosion resistance.

Rough parts surface, easy to make corrosive gases or liquids through the surface of the micro-valley infiltration into the metal inner layer, resulting in surface corrosion.

Influencing sealing

Rough surfaces do not fit tightly, and gases or liquids leak through cracks between contact surfaces.

The contact stiffness is affected

Contact stiffness is the ability of parts to resist contact deformation under external force. The stiffness of the machine depends to a great extent on the contact stiffness between the parts.

The measurement accuracy is affected

The surface roughness of measured parts and measuring tools will directly affect the accuracy of measurement, especially in precision measurement.

In addition, surface roughness has different effects on coating, thermal conductivity and contact resistance, reflectivity and radiation performance, resistance of liquid and gas flow, and current flow on conductor surface.

Evaluation Basis of Surface Roughness

Sampling Length

關于表面粗糙度 5 的小知識

Sampling length is a reference line length for evaluating the age of surface roughness. According to the formation and texture characteristics of the actual surface of the part, the length of the section reflecting the surface roughness characteristics should be selected, and the sampling length should be measured according to the total direction of the actual surface profile. Sampling length is defined and selected to limit and reduce the influence of surface waviness and shape error on the measurement results of surface roughness.

Assessment length

What-to-know about Surface Roughness 6

Assessment length is a necessary length for assessing contour. It may include one or more sampling lengths. Because the surface roughness of each part of the part surface is not necessarily uniform, it is often unreasonable to reflect the characteristics of a certain surface roughness on a sampling length, so it is necessary to take several sampling lengths on the surface to evaluate the surface roughness. Assessment length generally includes five sampling lengths.

datum line

The datum line is the contour midline used to evaluate the surface roughness parameters. There are two kinds of datum lines: the least squares midline of the contour: within the sampling length, the sum of the outline offset of each point on the contour line is the smallest, and it has a geometric contour shape. Arithmetic mean midline of contour: Within sampling length, the area of contour on both sides of the midline is equal. In theory, the least squares midline is an ideal datum line, but it is difficult to obtain in practical application. Therefore, the arithmetic average midline of contour is generally used to replace it, and a line with approximate position can be used to replace it in measurement.

Surface roughness evaluation parameters

Height characteristic parameters

Ra contour arithmetic mean deviation: the arithmetic mean of the absolute value of contour offset within the sampling length (lr). In practical measurement, the more the number of measuring points, the more accurate Ra is.

Maximum height of Rz contour: the distance between the top line of contour peak and the bottom line of valley.

Ra is preferred in the range of commonly used amplitude parameters. Before 2006, another evaluation parameter in the national standard was “10-point height of micro-roughness” expressed by Rz and maximum height of contour expressed by Ry. After 2006, 10-point height of micro-roughness was cancelled in the national standard and maximum height of contour expressed by Rz.

Spacing characteristic parameters

The average width of the RSM contour unit. Within the sampling length, the average distance of contour micro-roughness. Microscopic irregularity spacing refers to the length of contour peaks and adjacent contour valleys on the midline. In the case of the same Ra value, the Rsm value is not necessarily the same, so the reflected texture will be different. The surface that pays attention to the texture usually pays attention to the two indicators of Ra and Rsm.

The shape characteristic parameters of Rmr are expressed by the length ratio of the contour support, which is the ratio of the length of the contour support to the sampling length. The length of the contour support is the sum of the sectional lengths of each section within the sampling length, parallel to the midline and intersected with the contour peak line C.

Surface Roughness Measurement Method

comparison method

It is used in the field measurement of workshop, and it is often used in the measurement of medium or rough surface. The method is to determine the measured surface roughness value by comparing the measured surface with a certain number of roughness samples.

touch needle method

The surface roughness is slowly sliding along the measured surface with a diamond stylus whose radius of curvature is about 2 micron. The displacement of the diamond stylus is converted from an electrical length sensor to an electrical signal. After amplification, filtering and calculation, the surface roughness value is indicated by a display instrument. The profile curve of the measured section can also be recorded by a recorder.

Generally speaking, the measuring tool which can only display the surface roughness value is called the surface roughness measuring instrument, and the surface roughness profiler which can record the surface profile curve is called the surface roughness profiler. These two measuring tools have electronic calculating circuit or computer. They can automatically calculate the arithmetic mean deviation Ra of contour, the 10-point height Rz of micro-roughness, the maximum height Ry of contour and other evaluation parameters. They have high measuring efficiency and are suitable for measuring the surface roughness of Ra ranging from 0.025 to 6.3 um.

發(fā)表評論

電子郵件地址不會被公開。 必填項已用*標注

人妻体内射精一区二区三区小视频-国产精品久久久久人人爽-日韩三级黄色一区二区三区-亚洲伊人色综合网收藏| 国产极品高颜值露脸女主播-国产日韩亚洲欧美综合-成人亚洲天堂av在线-日韩在线观看免费不卡| 九九热在线视频精品一-国产乱码精品一区二区蜜臀-乱妇乱熟女妇熟女网站视频-国产精品午夜视频在线| 九九热在线视频中文字幕-午夜激情在线观看不卡-国产精彩激情视频在线观看-人妻丰满熟妇九九久久| 亚洲国产精品一区二区三区视频-午夜福利国产一区二区在线观看-亚洲欧美成人中文字幕-青青草好吊色在线视频| 国产亚洲精品第18页-久久精品理论午夜福利-99久久91热久久精品免费看-国产成人精品国产成人亚洲| 日本激情内射亚洲精品-国产亚洲一区二区三区午夜-国产精品人妻熟女av在线-亚洲av综合亚洲精品| 国产亚洲精品第18页-久久精品理论午夜福利-99久久91热久久精品免费看-国产成人精品国产成人亚洲| 日韩欧美国产在91啦-激情偷拍自拍在线观看-一本大道久久香蕉成人网-亚洲精品中文字幕观看| 国产喷白浆一区二区三区网站-中文字幕人妻系列av-国产极品尤物自拍露脸-自拍偷区亚洲综合激情| 绯色高清粉嫩国产精品-色偷偷亚洲偷自拍视频-国产性感午夜天堂av-**精品中文字幕一区二区三区| 人妻少妇中文字幕久久精品-水蜜桃av一区二区三区在线观看-日韩熟女精品一区二区三区-久久国产综合激情对白| 91天美精东果冻麻豆-亚洲自拍伦理在线观看-国产成人一区二区三区日韩精品-在线中文字幕av日韩| 亚洲精品一区中文字幕在线-开心五月综合五月综合-日韩av在线播放中文-国产臀交视频在线观看| 日韩欧美亚洲国产首页-色婷婷色久悠悠综合在线-亚色综合久久国产精品-日本岛国免费在线播放| 国产精品一区在线观看网址-亚洲国产日韩精品理论在线-在线播放视频在线观看视频-黄色片三级三级免费看| 亚洲综合中文在线视频-在线视频福利精品91-久一在线免费播放视频-精品手机亚洲一区二区三区| 人妻体内射精一区二区三区小视频-国产精品久久久久人人爽-日韩三级黄色一区二区三区-亚洲伊人色综合网收藏| 极品尤物视频在线观看-亚洲成人av在线蜜桃-美国一级黄色免费网站-免费观看四虎国产精品| 亚洲人妻精品中文字幕-国产黄色性生活一级片-日韩人妻系列在线视频-精品国产看高清av毛片| 99久久免费精品老色-白色白色在线观看视频-91麻豆精品在线播放-日本人妻少妇中文字幕| 国产传媒高清视频在线-日韩人妻少妇av在线-日本久久精品高清视频-丰满肥臀大屁股熟妇激情| 口爆调教视频在线播放-一区二区三区中文字幕自拍偷拍-亚洲精品乱码免费精品乱码免费-国产精品日韩欧美高清情| 色哟哟中文字幕在线播放-人人妻人人澡人人狠人人爽-国产午夜福利精品一区二区三区-性生活在线免费视频观看| 成人深夜视频免费在线观看-国产极品裸体av在线激情网-欧美色区国产日韩亚洲区-中文字幕番号免费观看| 色和尚在线视频久天天-少妇高潮太爽了在线免费观看-伊人久久大香线蕉午夜av一区-亚洲国产精品不伦不卡| 日韩国产自拍在线视频-亚洲av午夜激情在线播放-午夜福利你懂的在线观看-少妇特殊按摩高潮惨叫| 国产精品一区二区小视频-欧美亚洲国产精品激情在线-日韩免费视频一区二区三区视频-精品亚洲国产成av人片传媒| 日韩精品中文字幕人妻中出-日韩av在线免费播放-国产一级特黄一区二区三区-日本一区二区亚洲一区二区| 久热这里只有精品视频66-国产资源精品中文字幕-亚洲免费视频一区二区三区四区-亚洲国产特一特二区精品分布| 亚洲自拍偷拍另类第一页-麻豆国产午夜在线精品-久久精品一区二区三区综合-日本最近中文字幕免费| 悠悠成人资源亚洲一区二区-国产成人综合亚洲国产-青青草在线公开免费视频-91精品日本在线视频| 91福利精品第一导航-国产一区二区三区不卡精品-偷拍日本美女公厕尿尿-国产黄三级三级三级看三级| 日韩美女一区二区三区不卡顿-日本女优搜查官中文字幕-国产精品中文字幕自拍-欧美日韩天天干夜夜操| 成人av毛片18岁免费看-亚洲熟妇av一区二区三区宅男-欧美日韩另类视频在线观看-另类亚洲国产另类亚洲| 国产精品一线天粉嫩av-亚洲视频在线观看一区二区三-深夜男人福利在线观看-中文字幕国产精品第一页| 少妇高潮真爽在线观看-韩国福利视频一区二区三区-警花av一区二区三区-尤物视频国产在线观看| 黄色av日韩在线观看-偷拍自拍在线免费视频-色偷偷偷亚洲综合网另类-国产成人免费综合视频| 熟女国产精品一区二区三-一区二区三区av这些免费观看-精品国产一区二区二三区在线观看-国产精品一品二区三区日韩| 精国产精品亚洲二区在线观看-日韩人妻少妇一区二区三区-久久视频这里只要精品-亚洲精品欧洲综合在线观看| 中文熟妇人妻又伦精品视频-久久午夜精品人妻一区二区三区-少妇被粗大猛进进出出-日韩av在线成人观看|