色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

This paper is a long article on tool coating, which answers four questions: what is the tool surface coating technology, what are the commonly used coatings, what are the characteristics of the coatings and the application fields of the coatings. Those who specialize in machining continue to look at it in the past.

Overview of tool coating

Tool surface coating technology is a surface modification technology developed according to the market demand. Since its emergence in the 1960s, this technology has been widely used in the manufacturing industry of metal cutting tools. Especially after the emergence of high-speed cutting technology, coating technology has been developed and applied rapidly, and has become one of the key technologies of high-speed cutting tool manufacturing. This technology forms a certain film on the tool surface by chemical or physical methods, so that the cutting tool can obtain excellent comprehensive cutting performance, so as to meet the requirements of high-speed cutting.

To sum up, the surface coating technology of cutting tools has the following characteristics:

1. The coating technology can greatly improve the tool surface hardness without reducing the tool strength. At present, the hardness can be close to 100GPa;

2. With the rapid development of coating technology, the chemical stability and high-temperature oxidation resistance of the film are more prominent, which makes high-speed machining possible;

3. The lubricating film has good solid lubrication performance, which can effectively improve the machining quality, and is also suitable for dry cutting;

4. As the final process of tool manufacturing, coating technology has little impact on tool accuracy, and can carry out repeated coating process.

Benefits of coated cutting tools: it can greatly improve the service life of cutting tools; Effectively improve cutting efficiency; Obviously improve the surface quality of the machined workpiece; Effectively reduce the consumption of tool materials and reduce the processing cost; Reduce the use of coolant, reduce the cost and be conducive to environmental protection.

Correct surface treatment of small circular tools can improve tool life, reduce machining cycle time and improve machining surface quality. However, choosing the correct tool coating according to the machining needs may be a confusing and laborious work. Each coating has both advantages and disadvantages in cutting. If an inappropriate coating is selected, the tool life may be lower than that of uncoated tools, and sometimes even lead to more problems than before coating.

At present, there are many kinds of tool coatings to choose from, including PVD coating, CVD coating and composite coating alternately coated with PVD and CVD, which can be easily obtained from tool manufacturers or coating suppliers. This paper will introduce some common properties of tool coatings and some common PVD and CVD coating options. Each characteristic of the coating plays a very important role in determining which coating is most beneficial for machining.

How to correctly select the tool coating and improve the tool life? 2

Common coatings

1. Titanium nitride coating (TIN)

Tin is a universal PVD coating, which can improve tool hardness and have high oxidation temperature. The coating can be used for high speed steel cutting tools or forming tools to obtain good machining results.

2. Chromium nitride coating (CRN)

CrN coating has good adhesion resistance, which makes it the first choice in the processing of chip buildup. After coating this almost invisible coating, the machinability of high-speed steel tools or cemented carbide tools and forming tools will be greatly improved.

3. Diamond coating

CVD diamond coating can provide the best performance for non-ferrous metal material processing tools. It is an ideal coating for processing graphite, metal matrix composites (MMC), high silicon aluminum alloy and many other high abrasive materials (Note: pure diamond coated tools cannot be used for processing steel parts, because a large amount of cutting heat will be generated when processing steel parts, resulting in chemical reactions, Damage the adhesive layer between the coating and the tool).

4. Coating equipment

The coatings suitable for hard milling, tapping and drilling are different, and have their specific application occasions. In addition, multi-layer coatings can be used, and other coatings are embedded between the surface layer and the tool matrix, which can further improve the service life of the tool.

5. Titanium nitride carbide coating (TiCN)

The carbon element added in TiCN coating can improve the tool hardness and obtain better surface lubricity. It is an ideal coating for high speed steel tools.

6. Nitrogen aluminum titanium or nitrogen titanium aluminum coating (TiAlN / AlTiN)

The alumina layer formed in TiAlN / AlTiN coating can effectively improve the high temperature machining life of cutting tools. The coating can be used for cemented carbide tools mainly used for dry or semi dry cutting. According to the different proportion of aluminum and titanium in the coating, AlTiN coating can provide higher surface hardness than TiAlN coating, so it is another feasible coating choice in the field of high-speed machining.

How to correctly select the tool coating and improve the tool life? 3

Coating properties

1. Hardness

The high surface hardness brought by coating is one of the best ways to improve tool life. Generally speaking, the higher the hardness of the material or surface, the longer the service life of the tool. Titanium nitride carbide (TiCN) coating has higher hardness than titanium nitride (TIN) coating. Due to the increase of carbon content, the hardness of TiCN coating is increased by 33%, and its hardness variation range is about hv3000 ~ 4000 (depending on the manufacturer). The application of CVD diamond coating with surface hardness up to hv9000 in cutting tools has been relatively mature. Compared with PVD coated tools, the service life of CVD diamond coated tools is increased by 10 ~ 20 times. The high hardness and cutting speed of diamond coating can be 2 ~ 3 times higher than that of uncoated tools, making it a good choice for cutting non-ferrous materials.

2. Oxidation temperature

Oxidation temperature refers to the temperature at which the coating begins to decompose. The higher the oxidation temperature, the more favorable it is for cutting at high temperature. Although the room temperature hardness of TiAlN coating may be lower than that of TiCN coating, it has been proved to be much more effective than TiCN in high temperature processing. The reason why TiAlN coating can maintain its hardness at high temperature is that it can form a layer of aluminum oxide between the tool and chip, which can transfer heat from the tool to the workpiece or chip. Compared with high-speed steel tools, the cutting speed of cemented carbide tools is usually higher, which makes TiAlN the preferred coating for cemented carbide tools. This pvdtialn coating is usually used for cemented carbide drill bits and end mills

3. Wear resistance

Wear resistance refers to the ability of the coating to resist wear. Although the hardness of some workpiece materials may not be too high, the elements added and the process adopted in the production process may cause the cutting edge of the tool to crack or blunt.

4. Surface lubricity

High friction coefficient will increase the cutting heat, resulting in the shortening of coating life and even failure. Reducing the friction coefficient can greatly prolong the tool life. The fine and smooth coating surface or regular texture helps to reduce the cutting heat, because the smooth surface can quickly slide the chips away from the rake face and reduce the generation of heat. Compared with uncoated tools, coated tools with better surface lubrication can also be processed at higher cutting speed, so as to further avoid high-temperature fusion welding with workpiece materials.

5. Adhesion resistance

The anti adhesion of the coating can prevent or reduce the chemical reaction between the tool and the processed material and avoid the deposition of workpiece material on the tool. When machining non-ferrous metals (such as aluminum, brass, etc.), chip buildup (bue) often occurs on the tool, resulting in tool edge collapse or workpiece size out of tolerance. Once the processed material begins to adhere to the tool, the adhesion will continue to expand. For example, when processing aluminum workpiece with forming tap, the aluminum adhered to the tap will increase after processing each hole, and finally the tap diameter will become too large, resulting in over tolerance and scrapping of the workpiece size. Coatings with good adhesion resistance can play a good role even in processing occasions with poor coolant performance or insufficient concentration.

Application of coatings

Achieving cost-effective application of coatings may depend on many factors, but there are usually only one or several feasible coating options for each specific processing application. Whether the coating and its characteristics are selected correctly may mean the difference between significantly improved and almost no improvement in processability. Cutting depth, cutting speed and coolant may affect the application effect of tool coating.

Because there are many variables in the processing of a workpiece material, one of the best ways to determine which coating to choose is through trial cutting. Coating suppliers are constantly developing more new coatings to further improve the high temperature resistance, friction resistance and wear resistance of the coatings. It is always a good thing to work with coating (tool) manufacturers to verify the application of the latest and best tool coatings in machining.

發(fā)表評論

電子郵件地址不會被公開。 必填項已用*標注

日韩精品极品免费观看-91久久精品国产成人-成人亚洲国产精品一区不卡-免费在线播放韩国av| 亚洲欧洲av一区二区久久-日本丰满熟妇中出在线-欧美一区二区三区人妻少妇-日韩成人av免费在线| 3p人妻一区二区三区-亚洲精品国产高清自拍-女同国产日韩精品在线-亚洲午夜国产激情福利网站| 少妇人妻午夜精品视频-亚洲乱妇老熟女爽到潮的片-最新国产黄色一区二区-亚洲一区国产精品喷潮| 高清有码在线观看日本-精品少妇人妻一区av-色综合久久成人综合网-久久久国产精品人妻一区二区三区| 中文字幕久久精品一区二区三区-99国产麻豆精品人人爱-91麻豆精品福利视频-国产精品亚洲一区中文字幕| 爆操美女屁股在线观看免费-亚洲国产成人久久综合-亚洲一区二区免费中文麻豆-青青青青草原在线观看| 亚洲精品一区二区三区探花-av在线免费播放成人-精品亚洲一区二区三区在线播放-国产精品午夜福利亚洲综合网| 国产人妖直男在线视频-午夜福利视频合集91-亚洲五月自拍欧美第一页-国产主播免费在线一区二区| 国内精品欧美久久精品-国产极品尤物美在线观看-日本经典视频一区二区三区在线-国模91九色精品二三四| 国产亚洲精品视频自拍-激情五月开心五月婷婷-日本少妇三级交换做爰做-国产日韩三级中文字幕| 日韩精品综合在线一区二区-极品人妻av一区二区三区-激情综合五月中文字幕-欧美免费在线观看黄片| 超碰成人av免费观看-伊人色综合久久天天伊人婷-av天堂激情在线观看-国产精品自拍国产精品| 欧美成人国产精品137片内射-空之色水之色 在线观看-精品国产亚洲一区二区在线观看-色婷婷精品午夜在线播放| 成人精品一区二区三区不卡-十八禁啪啪啪一区二区三区-后入黑丝美女在线观看-国产熟女啪啪免费视频| 成人在线永久免费视频-日本理论电影一区二区三区-中文字幕成人av电影-91麻豆精品国产91久久麻豆| 正在播放后入极品美少妇-亚洲一区二区三区自拍麻豆-国产亚洲精品成人久久-av老司机亚洲精品久久| 岳的大肥屁熟妇五十路99-偷拍美女解手视频精品-日韩欧美一区二区三区精品-亚洲国产精品成人自拍| 九九热视频这里免费看-一二三区无线乱码中文在线-粉嫩美女无套内射视频免费播放-国产麻豆一精品一男同| 伊人久久大香线蕉综合av-久久久中文字幕人妻精品一区二区-青草在线免费观看视频-国产清纯白嫩美女蜜臀av| 亚洲精品在线观看蜜臀-亚洲日本va中文字幕久久-欧美不雅视频午夜福利-日韩卡一卡二卡三卡四| 亚洲精品综合久中文字幕-色老头国产av一区二区三区-久久夜色精品亚洲噜噜国产-资源新版在线天堂偷自拍| 亚洲欧美日本成人在线-伦理视频在线观看一区二区三区-日韩精品中文字幕人妻-四虎永久地址在线观看| 国产精品高潮呻吟久久av嫩-青青草免费公开在线观看视频-亚洲欧美日韩另类综合视频-国产三级在线观看精品| 97资源视频在线观看-青草视频在线免费播放-最新日韩中文字幕在线播放-成人国产av精品麻豆网站| 免费十八禁一区二区三区-国产精品一区二区三区99-在线一区二区三区男男视频观看-精品欧美一区二区三区人妖| 国产丝袜爆操在线观看-亚洲老熟妇日本五十六十路-亚洲av乱码久久亚洲精品-综合激情四射亚洲激情| 午夜狂情三级伦理涩之屋-亚洲国产精品美女嫩模综合在-久热在线观看免费视频-国产精品伦子一区二区三区| 成年深夜在线观看视频-成人国产av精品在线-av乱亚洲一区二区三区-亚洲精品综合一区二区在线| 国产二区三区视频在线观看-四虎精品一区二区在线观看-国产中文字幕一区二区视频-精品一区二区三区av在线| 精品国产欧美日韩电影-久久国产视频这里只有精品-深夜免费在线观看福利-久久久国产99精品视频| 日韩av毛片免费播放-国产999热这里只有精品-亚洲第一精品中文字幕-欧美特黄免费在线观看| 国产欧美日韩一区二区三区88-国产亚洲av嫩草精品影院-成人国产一区二区三区麻豆-在线观看午夜宅男视频| 九九九热在线免费观看-亚洲午夜理论片在线观看-欧美日韩亚洲国产第一-国产高清一区二区av在线| 少妇特殊按摩高潮连连-国产成熟美女三级视频-亚洲男人天堂成人免费-国产粉嫩美女在线观看| 青草黄色成人中文视频-国产剧情av在线大学生-日韩av在线一卡二卡三卡-国产成人午夜福利影院| 女同在线播放中文字幕-国产成人亚洲精品在线看-日韩有码在线观看视频-蜜桃av噜噜一区二区三区视频| 色人阁免费在线视频观看-中文字幕中文字幕日韩一区-91麻豆成人精品国产-亚洲精品成人剧情在线观看| 国产特黄特色特级黄大真人片-综合激情五月三开心五月-欧美日韩不卡视频合集-成熟的妇人亚洲性视频| 99热久久热在线视频-久久精品国产亚洲av成人男男-国产精品日韩精品久久99-中文字幕在线日本乱码| 国产精品18禁免费无摭挡-国产精品久久久看三级-国产亚洲精品熟女国产成人-国产亚洲精品不卡中文|