色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Hard turning (turning instead of grinding) refers to the process of using turning methods for the final machining or finishing of hardened steel. Typically, turning is only used for rough machining before quenching. Until the 1990s, the finishing after quenching could only be achieved through grinding processes, and turning could only process workpieces with hardness not exceeding HRC55. With the development of high-hardness cutting materials and related machine tools, such as the use of PCBN tools, ceramic tools, or new types of 碳化物 tools for turning hardened steel on modern lathes or turning centers, the machining quality can reach the level of fine grinding. Most applications of hard turning replace grinding. Currently, the hardness limit of turning can reach HRC68. In developed countries, hard turning technology has been widely used to process various parts, serving as an economical machining process to replace grinding.

hard turning tool

Tool Materials

Coated carbide tools involve coating wear-resistant materials such as TiN, TiCN, TiAlN, and Al2O3 onto carbide tools, with coating thickness ranging from 2 to 18mm. The function of coatings includes reducing friction, minimizing the generation of cutting heat, and having a low thermal conductivity to weaken the heat effect on the tool. Compared to conventional carbide tools, coated carbide tools exhibit significant improvements in strength, hardness, and wear resistance. For example, when machining workpieces with hardness between HRC45 and 55, coated carbide tools can achieve high-speed turning. Typically, CBN is suitable for machining hardened steel with hardness greater than HRC55, PCBN tools are suitable for workpieces with hardness higher than HRC60, and ceramic tools are more suitable for workpieces with hardness lower than HRC50. The cost of ceramic tool materials is lower than CBN, and ceramic tool technology in China is relatively mature with reliable blade performance. The bending strength and impact toughness of new types of carbide and coated carbide tool materials are higher than CBN and ceramic materials, and their prices are lower, making them suitable for processing hardened steel workpieces with hardness between HRC40 and 50.

What is Hard Turning Technology: An Economical Machining Process as Substitute for Grinding 2

1Cutting Parameters and Conditions

The rational selection of cutting parameters significantly affects hard turning. As the hardness of the workpiece material increases, the cutting speed should decrease. The appropriate cutting speed for hard turning finishing is between 50 and 200m/min, with a commonly used range of 100 to 150m/min. When using large cutting depths or interrupted cutting, the cutting speed should be maintained between 50 and 100m/min, with cutting depths typically ranging from 0.1 to 0.3mm. When high surface roughness is required, smaller cutting depths can be chosen, with feed rates typically ranging from 0.025 to 0.25mm/r, depending on the surface roughness values and productivity requirements. Due to the excellent heat resistance and wear resistance of PCBN and ceramic tool materials, higher cutting speeds, larger cutting depths, and smaller feed rates can be selected. However, the impact of cutting parameters on the wear of carbide tools is greater than that of PCBN tools, so it is not advisable to use higher cutting speeds and depths when using carbide tools.

2Hard Turning Machine Tools

Compared to turning non-hardened steel, turning hardened steel increases cutting forces by more than 50% and requires about twice the power. Therefore, hard turning imposes higher requirements on machine tools, such as system rigidity and power. To achieve surface quality comparable to grinding, radial and axial vibrations of the spindle must be kept within 2mm, and the machine must have a digital linear measurement system and good temperature compensation performance (micron-level compensation), while avoiding creep. In addition to ensuring high strength, the spindle system of the machine tool should also have high rotational speed to fully utilize the performance advantages of PCBN or ceramic tools, thereby ensuring the machining accuracy and efficiency required for continuous production.

 

Economic Benefits of Hard Turning

In the automotive manufacturing industry, most parts undergo final precision or shape machining after heat treatment, and hard turning is increasingly being adopted as an economical alternative to grinding. Currently, more and more foreign enterprises recognize the advantages of hard turning, while domestic practices still predominantly favor grinding, mainly due to the cost of tooling, which makes many companies view it as an expensive process.

1High Machining Efficiency

The cost of tools used in hard turning is generally 10 to 20 times higher than traditional turning tools, but compared to grinding, hard turning achieves higher machining efficiency. Hard turning often utilizes large cutting depths and high workpiece speeds, with metal removal rates typically three to four times that of grinding; the energy consumed is also only about one-fifth of grinding. Additionally, tool changeovers in hard turning can be completed within two minutes, compared to the 30 minutes or longer needed for grinding wheel replacements, without the need for correcting grinding wheel cutting profiles, thus minimizing production time losses associated with grinding wheel changes and corrections and ensuring high machine utilization rates.

2Lower Equipment Investment, Low Maintenance Costs, Suitable for Flexible Production Requirements

With equivalent productivity, lathe investment is only about one-third to one-tenth that of grinding machines, with lower auxiliary system costs. Lathes themselves are flexible machining methods with a wide processing range. For multi-variety small-batch production, modern CNC lathes equipped with various tool changers or tool magazines make it easy to switch between different workpieces, with quick workpiece clamping. Moreover, compared to grinding, hard turning is more adaptable to flexible batch production requirements. When turning, multiple surface machining (such as outer circles, inner holes, grooves, and end faces) can be completed in one clamping, resulting in short auxiliary times and high relative positional accuracy between machining surfaces. In contrast, grinding requires multiple installations or processes.

3Hard Turning Provides Excellent Surface Finish Quality for Parts

Although grinding can achieve good surface smoothness at relatively high feed rates, hard turning with PCBN inserts can achieve the same or better surface smoothness at significantly higher metal removal rates. Most of the heat produced during hard turning is carried away by the chips, avoiding surface burns and cracks commonly associated with grinding, resulting in excellent surface finish quality, precise machining roundness, and guaranteed surface accuracy.

4Hard Turning is a Clean Machining Process

Hard turning effectively removes metal by “peeling” softened chips from the workpiece. In most cases, hard turning does not require coolant, and using coolant can adversely affect tool life and surface quality. Since hard turning involves annealing the shear portion of the material to soften it for cutting, excessive coolant rates can reduce this effect caused by cutting forces, leading to increased mechanical wear and shortened tool life. This helps eliminate the problems associated with coolant use, reducing the cost of waste liquid treatment. Meanwhile, hard turning eliminates the need for coolant-related devices, reducing production costs, simplifying production systems, and producing clean and clean chips that are easier to recycle than grinding.

 

Development of Hard Turning

In the automotive industry of developed countries such as Germany, various shaft and sleeve parts are mostly processed using hard turning technology with good results. Due to the requirement for the best combination of machine tools, tools, fixtures, and processes, as well as insufficient promotion of the effectiveness of hard turning, the application of hard turning technology in China is not yet widespread. Currently, only a few enterprises are machining hardened.

發(fā)表評論

電子郵件地址不會被公開。 必填項已用*標(biāo)注

午夜福利网午夜福利网-国产粉嫩学生在线观看-亚洲精品成人高清在线观看-亚洲人成人日韩中文字幕| 亚洲国产成人不卡高清麻豆-精品国产精品三级在线专区-亚洲欧美国产日韩一区-亚洲高清日本一区二区| 中文字字幕乱码一区二区三-美女高清做自拍色啪视频-国产无遮挡男女一进一出-成人亚洲校园在线春色| 福利一区福利二区刺激-亚洲精品久久麻豆蜜桃-久久av蜜臀人妻一区二区三区-国产av剧情精品播放网站| 国产福利亚洲精品精彩在线-日韩在线精品视频免费-亚洲成人国产精品av-日本不卡一区二区三区四区视频| 人妻体内射精一区二区三区小视频-国产精品久久久久人人爽-日韩三级黄色一区二区三区-亚洲伊人色综合网收藏| 亚洲黄片免费观看高清-精品国产中文字幕av-60分钟三级全黄50岁-国产精品东北重口变态| 翔田千里的五十路六十路-精品国产综合一区二区三区-久久婷婷色中文字幕免费高清-国产精品伦理视频一区二区| 中文字幕亚洲天堂第一页-国产午夜福利在线视频-亚洲精品中文字幕女同-亚日韩精品一区二区三区| 久久99国产欧美精品-深夜宅男宅女在线观看-骚虎三级在线免费播放-精品国模人妻视频网站| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 国产精品高潮呻吟久久av嫩-青青草免费公开在线观看视频-亚洲欧美日韩另类综合视频-国产三级在线观看精品| 国产精品视频午夜福利-一本大道久久综合一区-成年深夜福利在线观看-国产传媒免费在线视频| 成人国产精品一区二区香蕉-一区二区三区欧美日韩电影在线观看-午夜福利视频合集一区二区-人妻少妇被粗大爽在线| 亚洲男人天堂av在线-中文字幕人妻熟女人妻免费视频-日韩一区二区三区少妇人妻-视频一区二区三区自拍偷拍| 国产黄片一区二区在线-国产精品99国产精品久久-国产,欧美视频免费看-长腿丝袜国产在线观看| 国产人妻熟女呻吟在线观看-国产成人免费视频观看-国产久久热这里只有精品-中文字幕女同女同女同| 99久久国产自偷自自偷蜜月-日韩熟女激情中文字幕-亚洲狼人社区av在线观看-四虎成人精品国产永久| 人妻精品一区二区视频免费-99热视频免费在线观看-亚洲av第一第二第三-乱码人妻精品一区二区三区| 九九热在线视频精品一-国产乱码精品一区二区蜜臀-乱妇乱熟女妇熟女网站视频-国产精品午夜视频在线| 日韩毛片精品毛片一区到三区-四虎国产精品久久免费观看-国产网站在线观看91-亚洲熟妇av不卡一区二区三区| 国产激情在线观看视频-久久久精品国产视频在线-亚洲国产成人精品在线-亚洲乱码国产乱码精品视频| 欧亚久久日韩av久久综合-国产性感美女色诱视频-色噜噜人妻丝袜av先锋影院先-二次元中文字幕色在线| 人妻少妇中出中文字幕-久久国内精品一国内精品-中文字幕av一区二区三区蜜桃-日韩一区二区三区精品视频在线观看| 91大神麻豆精品在线-熟女av综合一区二区三区-在线播放亚洲国产一区二区三-亚洲精品日韩在线丰满| 女人高潮久久久久久久久-久久久国产熟女一区二区三区-91在线精品国产丝袜-国产精品日韩亚洲一区二区| 日产中文字幕在线精品一区-日韩黄色特级片一区二区三区-8x8x精品国产自在现线拍-内射爆操视频在线观看| 91高清在线观看播放-av在线免费观看男人天堂-九九热在线视频免费观看-美女脱内裤露出隐私部位| 亚洲毛片在线观看视频网站-午夜高清福利在线观看-性生活视频在线免费观看-女人吞精口爆在线视频| 亚洲国产高清一区二区三区不卡-亚洲综合小综合中文字幕-亚洲黄色成人av在线-日韩一区二区三区av观看| 成人精品视频一区二区三区不卡-中文字幕一区二区三区在线乱码-国产无av码在线观看麻豆-成年人三级自拍片自拍| 深夜福利在线观看日韩-国产成人夜色高潮在线观看-熟女人妻少妇精品视频-97在线观看完整免费| 99在线精品偷拍视频-国产精品粉嫩在线播放-国产精品极品在线91-中文字幕有码在线亚洲| 久久精见国产亚洲av高清热-国产一区国产二区亚洲精品-99久久精品视频一区二区-91精品亚洲欧美午夜福利| 华人精品在线免费观看-国产熟女精品一区二区三区-国产成人午夜视频网址-女女同性女同一区二区三区九色| 亚洲人妻精品中文字幕-国产黄色性生活一级片-日韩人妻系列在线视频-精品国产看高清av毛片| 第一亚洲自拍偷拍一区二区-国产精品成人一区二区不卡-中文字幕一区二区三区精品人妻-一区二区三区中文字幕在线播放| 高清国产av一二三四-少妇激情高潮视频网站-被公么玩弄邻居人妻中文字幕-亚洲免费成人av在线| 亚洲av无一区二区三区久久-色琪琪久久综合网天天-国产一区二区视频在线播放-大象焦伊人久久综合网| 十八禁黄网站免费观看在线-欧美日韩精品久久久免-黄色av免费在线观看网站-国产在线高清一区二区三区av| 国产精品内射在线免费看-99久久国产精品一区二区三区-久久国产精品午夜福利-亚洲av精品一区二区三区|