色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

binder and carbide

Carbides are composed of refractory carbides with high compressive strength, hardness, and elastic modulus, which are difficult to plastically deform during the pressing process. To improve the formability of the powder and increase the strength of the compact, a binder must be added to the powder material before shaping.
As an intermediate auxiliary material, the binder must be completely removed during the degumming stage, as any residue can pose a quality risk to the product. The total carbon content in the alloy must be strictly controlled to produce high-quality carbide products. Although many factors can affect the total carbon content in carbide products, the application of the binder is a crucial aspect, especially when the quality of the tungsten carbide raw material is stable.

Therefore, the performance of the binder is a key factor directly affecting the properties of the blank and the final sintered product.

 

內(nèi)容 隱藏
1 Research Status and Issues
1.3 Paraffin-Type Binders Paraffin is derived from petroleum refining and is a mixture of various hydrocarbons, with a small amount of liquid “impurities” present as oil, and the solid component is saturated alkanes. The properties of paraffin are ultimately determined by its chemical composition, whether they are straight-chain, branched, or cyclic structures. Paraffins can be classified into: paraffin, microcrystalline wax, montan wax, vegetable wax, animal wax, and synthetic wax. There are dozens to hundreds of different varieties, each with different molecular weight, structure, performance, and uses. The paraffin used for carbides is mainly composed of normal alkanes, with few straight-chain molecules and aromatic hydrocarbons. The molecular weight range is 360-540, with a melting point of 42-70 degrees and slight solubility in ethanol. Microcrystalline wax has a molecular weight of 580-700, mostly branched molecules, with more cyclic hydrocarbon compounds. Paraffin is brittle, while microcrystalline wax is stronger and more flexible, with higher tensile strength and melting point, greater adhesiveness, and is a saturated straight-chain hydrocarbon that can completely volatilize at high temperatures without leaving any residue and is easily removed under vacuum. This reduces the difficulty in controlling the carbon content and improves the precision of the carbon content in the alloy, but it has a low viscosity, resulting in low compaction strength and large elastic after-effect, which makes it prone to cracking at stress concentration areas, difficult to produce complex-shaped products, and the compacts are brittle and prone to chipping.

Research Status and Issues

Current Usage

According to surveys, some 碳化物 manufacturers have used synthetic resins, dextrin, starch, methyl alcohol, and cellulose as binders in the past. For example, East Germany used a mixture of ceresin, paraffin wax, and mineral oil with an addition rate of 48%-59%; General Electric in the United States used starch, rubber, and synthetic resins; the United Kingdom applied water-soluble fibers and polyacrylamide; and some manufacturers even added surfactants.

Foreign carbide manufacturers, equipped with advanced production equipment and high automation levels, use pipeline conveying for mixed material preparation equipment, fully automatic high-precision presses, and multi-atmosphere pressure degumming and sintering integrated furnaces. The binders used in foreign carbide production are primarily paraffin and PEG, with paraffin acetone as the ball milling medium, and rubber as a binder is very rare.

Currently, the widely used binders in domestic carbide manufacturers are rubber, paraffin, and polyethylene glycol (PEG). Depending on the foreign manufacturer from which the technology was introduced and the time of introduction, each manufacturers usage may vary. Manufacturers that have introduced Sandvik technology generally use PEG as a binder and adopt a spray drying process. Some use paraffin as a binder and also adopt a spray drying process. Some enterprises use a combination of binders, and there are also mixtures of rubber and paraffin. SMEs basically use the rubber process, with each type of binder having its own advantages and disadvantages.

Rubber Binders

In the late 1950s and early 1960s, the carbide industry in China used butadiene sodium rubber imported from the Soviet Union, which had stable rubber quality. Later, due to changes in the situation, domestically produced synthetic butadiene sodium rubber from Lanzhou was used. Due to manufacturing process technology and equipment issues, the quality stability of the rubber was poor. The butadiene sodium rubber dissolved in gasoline had a high gel content, and the solution was suspended, making filtration difficult, with high ash and impurity content, which affected the normal production of the alloy.

Rubber solvents have good formability and can press out products with complex shapes and larger volumes, and the compact is less likely to crack. However, the disadvantages include high ash content, high residual carbon, difficulty in precise carbon control, vacuum removal, and unstable product quality, and it is not suitable for the spray drying process.

 

Paraffin-Type Binders
Paraffin is derived from petroleum refining and is a mixture of various hydrocarbons, with a small amount of liquid “impurities” present as oil, and the solid component is saturated alkanes. The properties of paraffin are ultimately determined by its chemical composition, whether they are straight-chain, branched, or cyclic structures. Paraffins can be classified into: paraffin, microcrystalline wax, montan wax, vegetable wax, animal wax, and synthetic wax. There are dozens to hundreds of different varieties, each with different molecular weight, structure, performance, and uses.
The paraffin used for carbides is mainly composed of normal alkanes, with few straight-chain molecules and aromatic hydrocarbons. The molecular weight range is 360-540, with a melting point of 42-70 degrees and slight solubility in ethanol. Microcrystalline wax has a molecular weight of 580-700, mostly branched molecules, with more cyclic hydrocarbon compounds. Paraffin is brittle, while microcrystalline wax is stronger and more flexible, with higher tensile strength and melting point, greater adhesiveness, and is a saturated straight-chain hydrocarbon that can completely volatilize at high temperatures without leaving any residue and is easily removed under vacuum. This reduces the difficulty in controlling the carbon content and improves the precision of the carbon content in the alloy, but it has a low viscosity, resulting in low compaction strength and large elastic after-effect, which makes it prone to cracking at stress concentration areas, difficult to produce complex-shaped products, and the compacts are brittle and prone to chipping.

Water-Soluble Polymer Binders
PEG (Polyethylene Glycol) is a water-soluble polymer, and foreign literature classifies PEG as a synthetic wax. It is prepared by stepwise addition of ethylene oxide to water or ethylene glycol, with a molecular weight range of 200-20000. PEG is completely soluble in water and has very low solubility in ethanol at room temperature (less than 1%). It is compatible with many substances and shows the greatest compatibility with substances with high polarity. It is non-toxic and non-irritating. The formability of PEG is equivalent to that of paraffin, and it has less residual carbon. Therefore, it can be considered a safe and environmentally friendly binder suitable for spray drying. However, PEG has a serious tendency to absorb moisture, and its moisture absorption capacity decreases with increasing molecular weight. It has very strict requirements for humidity and temperature in the working environment. After absorbing moisture, the powder becomes hard, the pressing pressure increases, and higher requirements are placed on the press. Additionally, it is more difficult to form some complex products.

 

Water-Soluble Polymer Binders
PEG (Polyethylene Glycol) is a water-soluble polymer, and according to foreign literature, PEG is classified as a synthetic wax. It is prepared by stepwise addition of ethylene oxide to water or ethylene glycol, with a molecular weight range of 200-20000. PEG is completely soluble in water and has very low solubility in ethanol at room temperature (less than 1%). It is compatible with many substances and shows the greatest compatibility with substances with high polarity. It is non-toxic and non-irritating. The formability of PEG is equivalent to that of paraffin, and it has less residual carbon. Therefore, it can be considered a safe and environmentally friendly binder suitable for spray drying. However, PEG has a serious tendency to absorb moisture, and its moisture absorption capacity decreases with increasing molecular weight. It has very strict requirements for humidity and temperature in the working environment. After absorbing moisture, the powder becomes hard, the pressing pressure increases, and higher requirements are placed on the press. Additionally, it is more difficult to form some complex products.

Comparison in Actual Production
To compare the performance of the three binders, three batches of mixed materials were prepared using sodium butadiene rubber, paraffin, and PEG as binders. The basic composition of the mixture was WC-8%Co, and the blanks were compressed to the same weight and then sintered in a vacuum degassing integrated furnace to obtain metallographic and physical properties for comparison.

Experimental Section

Analysis of the Performance of 3 Common Cabide Binders 2Analysis of the Performance of 3 Common Cabide Binders 3
The WC particle size used in this experiment was 6.5 m. The rubber used was sodium butadiene rubber, paraffin, and PEG.
The rubber and paraffin materials used aviation gasoline as the wet milling medium, while the PEG material used anhydrous alcohol as the ball milling medium. After ball milling, all materials were dried in a vacuum, screened, and granulated before pressing the compacts. They were then sintered under vacuum and pressure at a temperature of 1430°C.

From a direct analysis of the physical and mechanical performance data, it can be observed that the samples using paraffin and PEG as binders have increased strength and reduced magnetism, which is a significant advantage for mining carbides. Additionally, the metallographic photographs indicate that the microstructure using paraffin and PEG binders is more uniform compared to rubber binders. This is because paraffin and PEG have less residual carbon, while rubber binders are difficult to remove, leading to the growth of local grains due to the presence of a large amount of residual carbon.
Due to the lack of spray granulation equipment, the mixed materials using paraffin and PEG as binders were dried in a vacuum and then granulated using a manual screen. This had a significant impact on the pressing performance of the mixed materials, such as the accumulation of PEG in the drying process causing uneven distribution within the material, leading to agglomeration in the alloy phase. The poor effect of manually screening paraffin also posed a problem. However, from the perspective of the physical performance of the samples, it is still evident that PEG and paraffin have advantages over the rubber process.
During the experiment, the poor formability of paraffin due to manual screening was addressed by using manual weighing and pressing methods. However, in actual production, to accommodate large-scale production with self-pressing machines, increasing the pressing pressure and extending the holding time were necessary to avoid cracks or chipping of the paraffin material, which would reduce labor efficiency. Using a spray drying system to obtain a well-flowing mixture can effectively solve this problem.
The above discussion is a preliminary exploration of three commonly used binders in China. The research on binders is a systemic project involving a wide range of knowledge. To conduct in-depth research, one must possess knowledge in organic chemistry, polymer chemistry, and combine it with practical production knowledge of powder metallurgy to apply it to the production process of carbides. This will be a long-term and challenging task.

結(jié)論
With the continuous expansion of research and application fields of carbide materials, such as the emergence of ultra-fine and nano-carbides, and the extensive use of metal ceramics and ceramic materials, the raw materials for these products have undergone significant changes compared to the previous ordinary carbides. They have smaller particle sizes, lower bulk densities, poorer fluidity, and much worse forming performance than ordinary carbides. Therefore, a more excellent binder is needed. Specifically, research can be initiated in the following three aspects:
1.Studying the interaction between different types of powder materials and binders to understand the impact on forming performance.
2.Developing new polymer binders with different characteristics by combining different components.

3.Researching the thermal cracking characteristics of binders to meet the requirements of carbide production processes in terms of process characteristics and residual carbon content.
Through the above three aspects of research, it is expected to obtain a new generation of binders with good forming performance, environmental friendliness, stable performance, no toxicity, and no residue at the molecular level.

發(fā)表評(píng)論

電子郵件地址不會(huì)被公開。 必填項(xiàng)已用*標(biāo)注

日韩熟女人妻中文字幕-亚洲视频自拍偷拍免费-91国内精品久久精品一本-日韩高清一区二区不卡视频| 绯色av一区二区三区亚洲人妻-99热这里只有精品小说-在线播放国产日韩不卡免费视频-国产高清在线不卡一区二区视频| 男人天堂色男人色偷偷-国产内射在线干得爽到语无次-国产成人亚洲欧美二区综合-精品欧美高清视频观看| 中文字幕av东京热久久-国产精品日韩精品最新-亚洲激情av免费观看久久-亚洲第一精品国产网站| 日本高清不卡一区二区三区-男女国产猛烈无遮挡色-精品九九热在线免费视频-日本一区二区福利在线观看| 国产一级片内射在线视频-亚洲少妇无套内射激情-成人午夜性色福利视频-夜夜嗨视频无套实战丰满少妇| 在线精品日韩一区二区三区-国产免费人成网站在线观看-白白发布视频一区二区视频-乱妇乱女的熟妇熟女色综合| 尤物视频在线免费观看-粗大挺进孕妇人妻在线-国产精品自偷自拍对白-久久性生活免费看视频| 国产美女口爆吞精服务-亚洲无人区码一码二码三码-久久精品99国产精品最新-日本少妇激情在线视频| 尤物国产精品福利在线网-中日韩一二三级黄色永久视频-加勒比av免费在线播放-91欧美精品一区二区三区| 亚洲国产综合成人久久-日本一区二区三区精彩视频-激情四射五月天亚洲婷婷-人妻高清视频一区二区三区| 国产午夜精品视频在线观看-亚洲欧洲日本元码高清-亚洲精品视频自拍成人-午夜福利欧美在线观看视频| 亚洲无吗视频在线观看-成人免费在线视频平台-国产午夜视频看看果冻-国产黄色片国产黄色片| 亚洲国产一区二区精品专-人妻被黑人侵犯中文字幕夜色-国模午夜写真福利在线-成人自拍偷拍在线观看| 少妇高潮真爽在线观看-韩国福利视频一区二区三区-警花av一区二区三区-尤物视频国产在线观看| 亚州一区二区五码在线观看-97在线视频免费公开-小明久久国内精品自线-人妻av天堂综合一区| 高清一区二区三区不卡视频-中午字幕乱码亚洲无线码-亚洲一区二区三区在线视频观看-最新一二三国产精品网址| 成人精品av一区二区三区-日本久久精品在线视频-亚洲精品自拍资源在线播放-青青草原在线视频资源| 中文字幕亚洲精品人妻-91九色免费视频网站-黄色av全部在线观看-四虎最新地址在线观看| 成人久久一区二区三区精品-日本伦理在线一区二区三区-全亚洲最大黄色在线网站-国产免费午夜福利片在线| 传媒精品视频在线观看-久久蜜汁成人国产精品-国产精品伦理视频一区三区-丰满少妇特黄一区二区三区| 国产性色av综合亚洲不卡-中文字幕一区二区在线资源-久久四十路五十路六十路-91九色在线观看免费| 欧美日韩激情片在线观看-色男人天堂网在线观看-亚洲一级特黄大片免色-国产十八禁免费在线观看| 日韩在线免费av网站-免费啪视频一区二区三区在线观看-久操热在线视频免费观看-91亚洲国产成人精品性色| 国产最新av一区二区-国产精品自产av一区二区三区-国产精品国产三级国产有无不卡-成人偷拍自拍在线观看| 日本高清不卡码一区二区三区-国产性色av高清在线观看-亚洲黄色免费在线观看网站-亚洲性视频免费视频网站| 国产精品性色av免费-人妻系列中文字幕一区二区-精品一区二区三区在线日韩-亚洲欧美日韩国产一二三区| 亚洲乱码中文字幕小综合-欧美亚洲国产精品一区二区-中文字幕人妻系列人妻有码中文-一区二区三区在线观看的视频| 女同在线播放中文字幕-国产成人亚洲精品在线看-日韩有码在线观看视频-蜜桃av噜噜一区二区三区视频| 人妻体内射精一区二区三区小视频-国产精品久久久久人人爽-日韩三级黄色一区二区三区-亚洲伊人色综合网收藏| 在线免费观看四虎黄色av-亚洲成人av高清在线-成人性生交大片免费在线-四虎成人精品在线观看| 日韩午夜精品免费视频-真实国产精品自拍视频-91麻豆精产国品一二区灌醉-一本色道久久综合亚洲精品东京热| 极品尤物在线免费观看-超碰九七精品在线观看-午夜爱爱免费观看视频-日本免费人成黄页在线| av网站在线观看华人免费-美女露下体让人舔视频网站-六月丁香激情综合爱爱-宅福利有番号亚洲麻豆91| 国产丝袜美腿视频在线观看-美女被男人摸胸动态图-少妇精品高潮叫久久久-午夜激情福利国产精品| 91精品欧美人妻一区二区-日本女人体内射精视频-欧美一级一片内射少妇-久久99国产综合精品女人| 国产精品自在线拍国产-久久精品韩国日韩精品-久久夜色国产精品亚洲av蜜桃-日韩精品一区二区三区四区免费| 亚洲免费国产午夜视频-女同亚洲一区二区三区精品久久-欧美一级黄片高清免费-久久国产亚洲中文字幕| 丰满女性丰满女性性教视频-国产日韩欧美精品av-日韩区一区二区三区在线观看-四虎国产精品成人免费久久| 国产成人高清视频在线观看免费-人妻精品一区二区在线视频-国产成人一区二区三区精品久久-农村肥白老熟妇20p| 久久偷拍视频免费观看-国产精品国产精品偷麻豆-国产精品一品二区三区最新-精品国产亚洲一区二区三区|