色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

binder and carbide

Carbides are composed of refractory carbides with high compressive strength, hardness, and elastic modulus, which are difficult to plastically deform during the pressing process. To improve the formability of the powder and increase the strength of the compact, a binder must be added to the powder material before shaping.
As an intermediate auxiliary material, the binder must be completely removed during the degumming stage, as any residue can pose a quality risk to the product. The total carbon content in the alloy must be strictly controlled to produce high-quality carbide products. Although many factors can affect the total carbon content in carbide products, the application of the binder is a crucial aspect, especially when the quality of the tungsten carbide raw material is stable.

Therefore, the performance of the binder is a key factor directly affecting the properties of the blank and the final sintered product.

 

內(nèi)容 隱藏
1 Research Status and Issues
1.3 Paraffin-Type Binders Paraffin is derived from petroleum refining and is a mixture of various hydrocarbons, with a small amount of liquid “impurities” present as oil, and the solid component is saturated alkanes. The properties of paraffin are ultimately determined by its chemical composition, whether they are straight-chain, branched, or cyclic structures. Paraffins can be classified into: paraffin, microcrystalline wax, montan wax, vegetable wax, animal wax, and synthetic wax. There are dozens to hundreds of different varieties, each with different molecular weight, structure, performance, and uses. The paraffin used for carbides is mainly composed of normal alkanes, with few straight-chain molecules and aromatic hydrocarbons. The molecular weight range is 360-540, with a melting point of 42-70 degrees and slight solubility in ethanol. Microcrystalline wax has a molecular weight of 580-700, mostly branched molecules, with more cyclic hydrocarbon compounds. Paraffin is brittle, while microcrystalline wax is stronger and more flexible, with higher tensile strength and melting point, greater adhesiveness, and is a saturated straight-chain hydrocarbon that can completely volatilize at high temperatures without leaving any residue and is easily removed under vacuum. This reduces the difficulty in controlling the carbon content and improves the precision of the carbon content in the alloy, but it has a low viscosity, resulting in low compaction strength and large elastic after-effect, which makes it prone to cracking at stress concentration areas, difficult to produce complex-shaped products, and the compacts are brittle and prone to chipping.

Research Status and Issues

Current Usage

According to surveys, some 碳化物 manufacturers have used synthetic resins, dextrin, starch, methyl alcohol, and cellulose as binders in the past. For example, East Germany used a mixture of ceresin, paraffin wax, and mineral oil with an addition rate of 48%-59%; General Electric in the United States used starch, rubber, and synthetic resins; the United Kingdom applied water-soluble fibers and polyacrylamide; and some manufacturers even added surfactants.

Foreign carbide manufacturers, equipped with advanced production equipment and high automation levels, use pipeline conveying for mixed material preparation equipment, fully automatic high-precision presses, and multi-atmosphere pressure degumming and sintering integrated furnaces. The binders used in foreign carbide production are primarily paraffin and PEG, with paraffin acetone as the ball milling medium, and rubber as a binder is very rare.

Currently, the widely used binders in domestic carbide manufacturers are rubber, paraffin, and polyethylene glycol (PEG). Depending on the foreign manufacturer from which the technology was introduced and the time of introduction, each manufacturers usage may vary. Manufacturers that have introduced Sandvik technology generally use PEG as a binder and adopt a spray drying process. Some use paraffin as a binder and also adopt a spray drying process. Some enterprises use a combination of binders, and there are also mixtures of rubber and paraffin. SMEs basically use the rubber process, with each type of binder having its own advantages and disadvantages.

Rubber Binders

In the late 1950s and early 1960s, the carbide industry in China used butadiene sodium rubber imported from the Soviet Union, which had stable rubber quality. Later, due to changes in the situation, domestically produced synthetic butadiene sodium rubber from Lanzhou was used. Due to manufacturing process technology and equipment issues, the quality stability of the rubber was poor. The butadiene sodium rubber dissolved in gasoline had a high gel content, and the solution was suspended, making filtration difficult, with high ash and impurity content, which affected the normal production of the alloy.

Rubber solvents have good formability and can press out products with complex shapes and larger volumes, and the compact is less likely to crack. However, the disadvantages include high ash content, high residual carbon, difficulty in precise carbon control, vacuum removal, and unstable product quality, and it is not suitable for the spray drying process.

 

Paraffin-Type Binders
Paraffin is derived from petroleum refining and is a mixture of various hydrocarbons, with a small amount of liquid “impurities” present as oil, and the solid component is saturated alkanes. The properties of paraffin are ultimately determined by its chemical composition, whether they are straight-chain, branched, or cyclic structures. Paraffins can be classified into: paraffin, microcrystalline wax, montan wax, vegetable wax, animal wax, and synthetic wax. There are dozens to hundreds of different varieties, each with different molecular weight, structure, performance, and uses.
The paraffin used for carbides is mainly composed of normal alkanes, with few straight-chain molecules and aromatic hydrocarbons. The molecular weight range is 360-540, with a melting point of 42-70 degrees and slight solubility in ethanol. Microcrystalline wax has a molecular weight of 580-700, mostly branched molecules, with more cyclic hydrocarbon compounds. Paraffin is brittle, while microcrystalline wax is stronger and more flexible, with higher tensile strength and melting point, greater adhesiveness, and is a saturated straight-chain hydrocarbon that can completely volatilize at high temperatures without leaving any residue and is easily removed under vacuum. This reduces the difficulty in controlling the carbon content and improves the precision of the carbon content in the alloy, but it has a low viscosity, resulting in low compaction strength and large elastic after-effect, which makes it prone to cracking at stress concentration areas, difficult to produce complex-shaped products, and the compacts are brittle and prone to chipping.

Water-Soluble Polymer Binders
PEG (Polyethylene Glycol) is a water-soluble polymer, and foreign literature classifies PEG as a synthetic wax. It is prepared by stepwise addition of ethylene oxide to water or ethylene glycol, with a molecular weight range of 200-20000. PEG is completely soluble in water and has very low solubility in ethanol at room temperature (less than 1%). It is compatible with many substances and shows the greatest compatibility with substances with high polarity. It is non-toxic and non-irritating. The formability of PEG is equivalent to that of paraffin, and it has less residual carbon. Therefore, it can be considered a safe and environmentally friendly binder suitable for spray drying. However, PEG has a serious tendency to absorb moisture, and its moisture absorption capacity decreases with increasing molecular weight. It has very strict requirements for humidity and temperature in the working environment. After absorbing moisture, the powder becomes hard, the pressing pressure increases, and higher requirements are placed on the press. Additionally, it is more difficult to form some complex products.

 

Water-Soluble Polymer Binders
PEG (Polyethylene Glycol) is a water-soluble polymer, and according to foreign literature, PEG is classified as a synthetic wax. It is prepared by stepwise addition of ethylene oxide to water or ethylene glycol, with a molecular weight range of 200-20000. PEG is completely soluble in water and has very low solubility in ethanol at room temperature (less than 1%). It is compatible with many substances and shows the greatest compatibility with substances with high polarity. It is non-toxic and non-irritating. The formability of PEG is equivalent to that of paraffin, and it has less residual carbon. Therefore, it can be considered a safe and environmentally friendly binder suitable for spray drying. However, PEG has a serious tendency to absorb moisture, and its moisture absorption capacity decreases with increasing molecular weight. It has very strict requirements for humidity and temperature in the working environment. After absorbing moisture, the powder becomes hard, the pressing pressure increases, and higher requirements are placed on the press. Additionally, it is more difficult to form some complex products.

Comparison in Actual Production
To compare the performance of the three binders, three batches of mixed materials were prepared using sodium butadiene rubber, paraffin, and PEG as binders. The basic composition of the mixture was WC-8%Co, and the blanks were compressed to the same weight and then sintered in a vacuum degassing integrated furnace to obtain metallographic and physical properties for comparison.

Experimental Section

Analysis of the Performance of 3 Common Cabide Binders 2Analysis of the Performance of 3 Common Cabide Binders 3
The WC particle size used in this experiment was 6.5 m. The rubber used was sodium butadiene rubber, paraffin, and PEG.
The rubber and paraffin materials used aviation gasoline as the wet milling medium, while the PEG material used anhydrous alcohol as the ball milling medium. After ball milling, all materials were dried in a vacuum, screened, and granulated before pressing the compacts. They were then sintered under vacuum and pressure at a temperature of 1430°C.

From a direct analysis of the physical and mechanical performance data, it can be observed that the samples using paraffin and PEG as binders have increased strength and reduced magnetism, which is a significant advantage for mining carbides. Additionally, the metallographic photographs indicate that the microstructure using paraffin and PEG binders is more uniform compared to rubber binders. This is because paraffin and PEG have less residual carbon, while rubber binders are difficult to remove, leading to the growth of local grains due to the presence of a large amount of residual carbon.
Due to the lack of spray granulation equipment, the mixed materials using paraffin and PEG as binders were dried in a vacuum and then granulated using a manual screen. This had a significant impact on the pressing performance of the mixed materials, such as the accumulation of PEG in the drying process causing uneven distribution within the material, leading to agglomeration in the alloy phase. The poor effect of manually screening paraffin also posed a problem. However, from the perspective of the physical performance of the samples, it is still evident that PEG and paraffin have advantages over the rubber process.
During the experiment, the poor formability of paraffin due to manual screening was addressed by using manual weighing and pressing methods. However, in actual production, to accommodate large-scale production with self-pressing machines, increasing the pressing pressure and extending the holding time were necessary to avoid cracks or chipping of the paraffin material, which would reduce labor efficiency. Using a spray drying system to obtain a well-flowing mixture can effectively solve this problem.
The above discussion is a preliminary exploration of three commonly used binders in China. The research on binders is a systemic project involving a wide range of knowledge. To conduct in-depth research, one must possess knowledge in organic chemistry, polymer chemistry, and combine it with practical production knowledge of powder metallurgy to apply it to the production process of carbides. This will be a long-term and challenging task.

結(jié)論
With the continuous expansion of research and application fields of carbide materials, such as the emergence of ultra-fine and nano-carbides, and the extensive use of metal ceramics and ceramic materials, the raw materials for these products have undergone significant changes compared to the previous ordinary carbides. They have smaller particle sizes, lower bulk densities, poorer fluidity, and much worse forming performance than ordinary carbides. Therefore, a more excellent binder is needed. Specifically, research can be initiated in the following three aspects:
1.Studying the interaction between different types of powder materials and binders to understand the impact on forming performance.
2.Developing new polymer binders with different characteristics by combining different components.

3.Researching the thermal cracking characteristics of binders to meet the requirements of carbide production processes in terms of process characteristics and residual carbon content.
Through the above three aspects of research, it is expected to obtain a new generation of binders with good forming performance, environmental friendliness, stable performance, no toxicity, and no residue at the molecular level.

發(fā)表評論

電子郵件地址不會被公開。 必填項(xiàng)已用*標(biāo)注

日韩人妻少妇手机看片-高清av有码中文字幕在线-禁止18勿入国产精品视频-中文字幕精品乱码亚洲一区| 日本一区二区三区视频高清-国产麻无矿码直接观看-国产精品久久久久久无-日韩精品不卡在线视频| 成熟女人毛茸茸的视频-国产亚洲精品综合一区二区-国产一区二区三区麻豆视频-国产精品自拍实拍在线看| 亚洲欧洲偷拍自拍av-日韩午夜福利剧场久久-午夜福利成人在线视频-91午夜福利在线观看精品| 亚洲中文字幕中出在线-美女口爆吞精在线播放-亚洲欧美清纯唯美另类-国产一区二区三区免费观看不卡| 国产一区二区中文字幕在线观看-人妻少妇被粗大爽视频-开心五月婷婷综合网站-国产精品久久国产精麻豆| 日韩亚洲分类视频在线-熟妇人妻久久中文字幕电-久久麻传媒亚洲av国产-精品丰满熟妇高潮一区| 91亚洲精品免费在线观看-加勒比国产精品综合久久-91九色精品丝袜久久人妻-正常人的性生活一个月几次| 亚洲五月六月丁香缴情久久-国产精品国产三级国产一区-人妻中文字幕一区二区三区四区-精品在线视频尤物女神| 欧美日韩在线无卡免费播v-91麻精品国产91久久久久-中文字幕亚洲综合久久菠萝蜜-久久青青草原资源福利| 亚洲成人av综合在线-日韩精品久久久中文字幕人妻-国产精品无套白嫩剧情-五月婷婷久久激情综合| 在线观看日韩不卡视频-深夜福利成人羞羞免费视频-日韩欧美精品综合另类-黄色特级一级片中文字幕| 国产深夜视频在线观看-丰满人妻熟妇乱又乱精品-青草视频在线观看资源-奇米网东京热日本人妻| 国产精品高潮呻吟久久av嫩-青青草免费公开在线观看视频-亚洲欧美日韩另类综合视频-国产三级在线观看精品| 久久精品极品盛宴免视-五月综合激情中文字幕-精品中文字幕一区二区精彩-中文字幕熟女日韩人妻| 亚洲不卡视频一区二区三区-99久久精品国产成人综合-国内精品熟女亚洲精品熟女-亚洲日本成人在线观看高清| 中文字幕日韩精品人妻久久久-午夜福利激情视频在线观看-蜜桃黄网站视频在线观看-国产丰满熟女夜夜嗨av| 亚洲另类午夜中文字幕-日本av手机在线观看-性生交大片免费看看过的-天堂av免费在线观看| 自拍成人免费在线视频-91在线高清视频播放-国产美女口爆吞精系列-午夜福利黄片在线观看| 国产色悠悠综合在线观看-亚洲av综合av一区-久久久久国产精品三级网-欧美日韩精品一区二区不卡| 亚洲免费视频免费视频-年轻人的性生活免费视频-亚洲国产aa精品一区二区高清-可以免费看的av毛片| 高清国产av一二三四-少妇激情高潮视频网站-被公么玩弄邻居人妻中文字幕-亚洲免费成人av在线| 久色视频精品在线观看-在线看片免费人成视久网国产-亚洲精品人妻中文字幕-国产一区二区午夜福利在线观看| 免费亚洲毛片在线播放-国产精品国产三级国产专区不卡-亚洲欧美日韩狂野精品-白嫩丰满人妻荫蒂毛茸茸| 91精品18国产在线观看-午夜福利原创精品视频-欧美日韩在线亚洲另类-欧美日韩亚洲国产综合在线| 未满十八禁止免费观看网站-国产夫妻福利在线观看-亚洲国产黄色精品在线-日韩亚洲一卡二卡三卡| 国产精品视频午夜福利-一本大道久久综合一区-成年深夜福利在线观看-国产传媒免费在线视频| 国产精品人成在线播放蜜臀-老司机午夜福利视频在线-亚洲激情av免费观看-国产情侣91在线观看| 国产熟女露脸91麻豆-自拍视频在线观看后入-麻豆映画视频在线观看-国产视频男女在线观看| 亚洲精品综合久中文字幕-色老头国产av一区二区三区-久久夜色精品亚洲噜噜国产-资源新版在线天堂偷自拍| 国产精品国产亚精品不卡-欧美淫淫基地电影网站-亚洲高清精品人妻偷拍-四虎精品永久在线播放| 亚洲av日韩av天堂影片精品-熟妇人妻丰满少妇中文-国产精品日本一区二区三区-国产精品熟女乱色一区二区| 中美高清在线观看av-精品视频中文字幕天码-日韩高清一二三区在线观看-精品人妻91一区二区三区| 风韵丰满熟妇老熟女呻吟-亚洲国产丝袜久久久精品一区二区-久久午夜精品一区二区三区-人妻视频精品一区二区三区| 五月激情综合网俺也去-美欧日韩一区二区三区视频-午夜看片福利在线观看-色老板在线免费观看视频日麻批| 国产精品一线天粉嫩av-亚洲视频在线观看一区二区三-深夜男人福利在线观看-中文字幕国产精品第一页| 欧洲熟女乱色一区二区三区-人妻中文字幕一区二区在线视频-亚洲码欧洲码一区二区三区四区-日本片在线美女视频骚货| 日韩三级在线视频不卡-国内自拍色第一页第二页-96热久久这里只有精品-日韩精品有码一区二区三区久久久| 国产一区二区三区在线播放-偷拍女厕尿尿在线免费看-午夜一区二区三区三区-国产精品一区二区三上人妻| 国产精品一区二区久久人人爽-精品人妻一区二区三区有码-亚洲一二三区精品与老人-久久久之精品久久久| 男女啪啪动态视频免费-日韩精品一区二区高清-日韩在线有码中文字幕-日本免费高清一区二区三区视频|