色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

10 Important Material Proportions In Cemented Carbide Cutting tools 2

Cemented carbide cutting tools are very common in cutting operations, and the correct selection of cutting tools is crucial for ensuring processing efficiency and quality. By familiarizing ourselves with the composition ratio of cutting tool materials, we can select the appropriate tools to meet different machining requirements. Therefore, Zhangzhiyuan has compiled a list of 10 main materials and their common proportions to help find the best cutting tools.

 

Carbon Tungsten Carbide

Tungsten carbide is a material used for manufacturing cutting tools and is the primary material due to its ultra-high hardness and wear resistance, allowing the tools to remain sharp during high-intensity cutting processes.

(1) 60% – 70% Tungsten Carbide

Used for cutting tools that require higher toughness and impact strength, suitable for processing softer or more ductile materials.

① Suitable for processing: aluminum alloys, copper alloys, plastics, low-carbon steel, medium-carbon steel, etc.

② Suitable conditions: rough machining tools, such as turning tools, milling cutters, and tools for heavy cutting.

③ Representative tools: Sandvik GC4030 turning blade, Kennametal KCP25 series milling blade, etc.

(2) 70% – 80% Tungsten Carbide

Used for multi-functional cutting tools, balancing hardness and toughness, suitable for a wide range of cutting applications.

① Suitable for processing: stainless steel, alloy steel, tool steel, cast iron, etc.

② Suitable conditions: medium machining tools, such as general turning tools, milling cutters, and drilling cutters.

③ Representative tools: Sandvik GC1125 series blade, Kennametal KCPK30 milling blade.

(3) 80% – 85% Tungsten Carbide

Used for cutting tools with high hardness and wear resistance, suitable for processing harder metal materials.

① Suitable for processing: hardened steel, high-strength alloy steel, tool steel, and heat-resistant alloys, etc.

② Suitable conditions: finishing tools, high-speed cutting tools, and tools for difficult-to-machine materials, such as precision turning tools and high-speed milling cutters.

(4) 85% – 90% Tungsten Carbide

Used for cutting tools that require extremely high hardness and wear resistance, suitable for high-intensity and high-speed cutting applications.

① Suitable for processing: hardened steel, superhard alloys, titanium alloys, and nickel-based alloys, and other high-strength materials.

② Suitable conditions: high-hardness cutting tools, such as high-speed cutting tools used in aerospace and automotive manufacturing, and finishing tools that require extremely high wear resistance.

(5) 90% – 95% Tungsten Carbide

Used for cutting tools with ultra-high hardness and extreme wear resistance, suitable for processing very hard materials.

① Suitable for processing: superhard alloys, hardened steel, hard cast iron, and other high-hardness materials.

② Suitable conditions: ultra-precision machining tools, high-precision cutting tools, especially suitable for applications that require extreme wear resistance, such as mold manufacturing and precision machining of hard materials.

10 Important Material Proportions In Cemented Carbide Cutting tools 3

Cobalt Powder

Cobalt powder is a binder used in cemented carbide cutting tools that provides toughness and impact resistance, commonly used to balance the hardness and wear resistance of the tools.

(1) 3% – 6% Cobalt Powder

Used for cutting tools that require higher hardness and wear resistance, typically applied in finishing and high-speed cutting.

① Suitable for processing: high-strength alloy steel, hardened steel, stainless steel, etc.

② Suitable conditions: finishing tools, high-speed cutting tools, such as high-speed milling cutters and turning tools.

(2) 6% – 10% Cobalt Powder

This is the most common proportion range, suitable for multi-purpose tools, balancing hardness, toughness, and wear resistance, applicable to a wide range of cutting applications.

① Suitable for processing: general steel, cast iron, stainless steel, heat-resistant alloys, etc.

② Suitable conditions: turning tools, milling cutters, and drilling cutters, particularly suitable for processing medium to high-strength materials.

(3) 10% – 15% Cobalt Powder

Used for cutting tools that require higher toughness and impact strength, suitable for rough machining and heavy cutting tasks.

① Suitable for processing: high-hardness alloy steel, large castings, heat-resistant alloys, and other hard materials.

② Suitable conditions: rough machining tools, such as heavy cutting milling cutters, turning tools, and drills, especially used under high impact and high stress conditions.

(4) 15% – 25% Cobalt Powder

Used in specific cases, such as cutting tools that require extremely high toughness and impact resistance, particularly suitable for tools used under extreme heavy-duty cutting conditions.

① Suitable for processing: high-strength alloy steel, superhard materials, and other materials that require extremely high toughness and impact resistance.

② Suitable conditions: tools for rough machining, milling cutters with large cutting depths, turning tools, and cutting tools used under heavy-duty conditions.

10 Important Material Proportions In Cemented Carbide Cutting tools 4

Titanium Aluminum 合金

Titanium aluminum carbide is a compound formed by titanium, aluminum, and carbon elements, commonly used as a coating or blended material for cemented carbide cutting tools to enhance hardness, wear resistance, and oxidation resistance.

(1) Ti-Al-C Ratio 1:1:1

This ratio of titanium aluminum carbide is typically used for high-temperature resistant coatings and structural materials, offering excellent high-temperature stability and hardness, suitable for cutting processes in high-temperature environments.

① Suitable for processing: high-temperature alloys, heat-resistant steels, stainless steels, and other materials.

② Suitable conditions: tools that require high-temperature and wear resistance, such as high-speed cutting tools, drills, and milling cutters.

(2) Ti-Al-C Ratio 2:1:1

With a higher titanium content in this ratio, the material’s toughness and oxidation resistance are enhanced, making it suitable for high-speed cutting and the processing of medium-strength materials.

① Suitable for processing: stainless steels, titanium alloys, heat-resistant alloys, etc.

② Suitable conditions: multi-purpose tools, such as turning tools, milling cutters, and drilling cutters, particularly suitable for processing medium-strength materials.

(3) Ti-Al-C Ratio 3:1:2

This ratio increases the proportion of aluminum, improving the material’s high-temperature and corrosion resistance performance, making it suitable for applications that require high oxidation resistance.

① Suitable for processing: ultra-high-temperature alloys, difficult-to-machine materials, corrosion-resistant alloys, etc.

② Suitable conditions: cutting tools used under extreme conditions, such as cutting tools for the aerospace industry and tools for processing high-temperature alloys.

10 Important Material Proportions In Cemented Carbide Cutting tools 5

Nickel Powder

Nickel powder is a binder material commonly used in cemented carbide cutting tools that enhances the toughness and corrosion resistance of the tools, particularly suitable for use in environments with high processing requirements.

(1) Nickel Content 10% – 15%

This proportion of nickel powder is used to improve the corrosion resistance and toughness of cutting tools, suitable for processing non-ferrous metals and corrosion-resistant materials.

① Suitable for processing: aluminum alloys, copper alloys, stainless steels, and other materials.

② Suitable conditions: tools for precision machining and those that require high corrosion resistance, such as milling cutters and drills.

(2) Nickel Content 15% – 20%

At this ratio, the higher nickel content enhances the tool’s impact resistance and toughness, suitable for heavy-duty machining and cutting of difficult-to-machine materials.

① Suitable for processing: heat-resistant alloys, high-strength steels, stainless steels, etc.

② Suitable conditions: tools for heavy cutting and rough machining, suitable for processing under high-stress conditions.

(3) Nickel Content 20% – 25%

This proportion of nickel powder is used for tools that require extremely high toughness and durability, suitable for high-intensity machining under extreme conditions.

① Suitable for processing: ultra-high-strength alloys, difficult-to-machine materials, and materials that require fatigue resistance.

② Suitable conditions: high-precision tools and heavy-duty machining tools, applicable in fields such as aerospace and nuclear industries.

10 Important Material Proportions In Cemented Carbide Cutting tools 6

Trace Elements

Titanium is a lightweight, high-strength metal material with excellent corrosion resistance and biocompatibility. It is commonly used in the coatings and substrates of cemented carbide cutting tools to enhance the tool’s strength, wear resistance, and oxidation resistance.

(1) Titanium Content 10% – 15%

This proportion of titanium is used to enhance the wear resistance and strength of cutting tools, particularly suitable for use under high-temperature and high-stress conditions.

① Suitable for processing: stainless steels, titanium alloys, high-temperature alloys, and other materials.

② Suitable conditions: high-precision tools, high-temperature cutting tools, such as coated tools and milling cutters.

(2) Titanium Content 15% – 20%

At this ratio, the higher content of titanium is suitable for processing environments that require high strength and impact resistance.

① Suitable for processing: high-strength steels, nickel-based alloys, corrosion-resistant alloys, etc.

② Suitable conditions: heavy-duty machining tools, high-temperature resistant tools, particularly suitable for cutting applications in the aerospace and energy fields.

(3) Titanium Content 20% – 25%

This high proportion of titanium is mainly used to enhance the stability and durability of tools under extreme machining conditions, suitable for cutting difficult-to-machine materials.

① Suitable for processing: ultra-high-temperature alloys, difficult-to-machine metals, composite materials, etc.

② Suitable conditions: cutting tools used in extreme environments, such as tools for the nuclear industry, aerospace, and military applications.

10 Important Material Proportions In Cemented Carbide Cutting tools 7

Tantalum

Tantalum is a rare metal with a high melting point and good thermal conductivity, commonly used in the coatings and alloy compositions of cemented carbide cutting tools to enhance the tool’s wear resistance, heat resistance, and corrosion resistance, especially suitable for high-temperature and heavy-duty cutting environments.

(1) Tantalum Content 5% – 10%

This proportion of tantalum is used to enhance the wear resistance and thermal stability of cutting tools, suitable for cutting processes under medium to high temperatures.

① Suitable for processing: stainless steels, alloy steels, titanium alloys, etc.

② Suitable conditions: medium to high-temperature cutting tools, such as coated tools and milling cutters, applicable in industries like aerospace, automotive manufacturing, etc.

③ Representative tools: Iscar IC5500 series blades, Kennametal KCU15 blade.

(2) Tantalum Content 10% – 15%

At this ratio, the moderate content of tantalum further improves the tool’s corrosion resistance and oxidation resistance, suitable for use at even higher temperatures.

① Suitable for processing: high-temperature alloys, corrosion-resistant steels, stainless steels, etc.

② Suitable conditions: coated tools for extreme conditions, high-strength turning tools, particularly suitable for the energy and aviation fields.

③ Representative tools: Walter WKP35 series blades, Sandvik GC4225 blade.

(3) Tantalum Content 15% – 20%

This high proportion of tantalum is used for extreme high-temperature and heavy-duty cutting applications, ensuring that the tools maintain high performance under harsh processing conditions.

① Suitable for processing: ultra-high-temperature alloys, difficult-to-machine metals, wear-resistant materials.

② Suitable conditions: high-temperature coated tools for the nuclear industry and aerospace fields, heavy-duty milling cutters for extreme machining conditions.

10 Important Material Proportions In Cemented Carbide Cutting tools 8

Chromium

Chromium is a hard metal with good corrosion resistance and wear resistance, commonly used in the coatings and alloys of cemented carbide cutting tools to enhance the tool’s wear resistance, corrosion resistance, and oxidation resistance, particularly suitable for use under severe processing conditions.

(1) Chromium Content 5% – 10%

This proportion of chromium is used to enhance the tool’s wear resistance and corrosion resistance, suitable for moderate-intensity cutting applications.

① Suitable for processing: stainless steels, alloy steels, cast irons, etc.

② Suitable conditions: cutting tools with moderate strength, such as general turning tools and milling cutters.

(2) Chromium Content 10% – 15%

At this ratio, the increased content of chromium improves the tool’s oxidation resistance and durability, suitable for higher temperature and more severe processing environments.

① Suitable for processing: high-temperature alloys, corrosion-resistant steels, nickel-based alloys, etc.

② Suitable conditions: high-temperature cutting tools, corrosion-resistant coated tools, applicable in aerospace and energy fields.

(3) Chromium Content 15% – 20%

This high proportion of chromium is used for tools that require extremely high wear resistance and corrosion resistance, especially for processing at extreme temperatures.

① Suitable for processing: ultra-high-temperature alloys, corrosion-resistant alloys, hard metals, etc.

② Suitable conditions: high-temperature coated tools for the nuclear industry and aerospace fields, heavy-duty cutting tools for extreme conditions.

10 Important Material Proportions In Cemented Carbide Cutting tools 9

Niobium

Niobium is a rare metal with a high melting point, excellent heat resistance, and corrosion resistance. It is commonly used in the coatings of cemented carbide cutting tools or added as an alloying element to enhance the tool’s stability and oxidation resistance during high-temperature and high-intensity processing.

(1) Niobium Content 5% – 10%

This proportion of niobium is used to enhance the tool’s thermal stability and oxidation resistance, suitable for cutting operations under medium to high temperatures.

① Suitable for processing: stainless steels, titanium alloys, nickel-based alloys, etc.

② Suitable conditions: high-temperature cutting tools and corrosion-resistant coated tools, such as turning and milling cutters.

(2) Niobium Content 10% – 15%

At this ratio, the increased content of niobium significantly enhances the tool’s high-temperature strength and fatigue resistance, suitable for use under extreme processing conditions.

① Suitable for processing: high-temperature alloys, corrosion-resistant steels, stainless steels, etc.

② Suitable conditions: high-strength turning tools, heavy-duty milling cutters, especially suitable for high-demand fields such as aerospace and nuclear industries.

(3) Niobium Content 15% – 20%

This high proportion of niobium is used for tools that require extremely high heat resistance and oxidation resistance, particularly suitable for use in ultra-high temperatures and extreme processing conditions.

① Suitable for processing: ultra-high-temperature alloys, corrosion-resistant alloys, composite materials, etc.

② Suitable conditions: high-temperature coated tools under extreme environments, high-precision cutting tools, especially applicable in nuclear and aerospace industries.

10 Important Material Proportions In Cemented Carbide Cutting tools 10

Vanadium

Vanadium is a metal element used to enhance the wear resistance and oxidation resistance of cutting tools. It is commonly added as an alloying additive or coating material to cemented carbide cutting tools to improve their performance during high-temperature and high-intensity processing.

(1) Vanadium Content 5% – 10%

This proportion of vanadium is used to enhance the tool’s wear resistance and oxidation resistance, suitable for cutting operations under medium to high temperatures.

① Suitable for processing: alloy steels, stainless steels, high-temperature alloys, etc.

② Suitable conditions: for turning and milling cutters, especially for high-temperature cutting and applications requiring high corrosion resistance.

(2) Vanadium Content 10% – 15%

At this ratio, the increased content of vanadium further improves the tool’s high-temperature strength and wear resistance, suitable for processing under extreme conditions.

① Suitable for processing: high-strength steels, corrosion-resistant alloys, nickel-based alloys, etc.

② Suitable conditions: for heavy-duty turning tools, milling cutters, especially for cutting under high-temperature and high-stress conditions.

(3) Vanadium Content 15% – 20%

This high proportion of vanadium is used for tools that require extremely high wear resistance and oxidation resistance, particularly suitable for use in ultra-high temperatures and extreme processing conditions.

① Suitable for processing: ultra-high-temperature alloys, corrosion-resistant materials, composite materials, etc.

② Suitable conditions: for high-temperature coated tools under extreme environments, high-precision cutting tools, especially applicable in aerospace and energy fields.

10 Important Material Proportions In Cemented Carbide Cutting tools 11

Titanium Carbide of Cutting tools

Titanium carbide is an ultra-hard material commonly used as a coating or as an alloy component in cemented carbide cutting tools. It significantly improves the tool’s hardness, wear resistance, and high-temperature performance, making it suitable for cutting operations in high-intensity and high-temperature environments.

(1) Titanium Carbide Content 10% – 15%

This proportion of titanium carbide is used to enhance the tool’s wear resistance and thermal resistance, suitable for cutting at high temperatures.

① Suitable for processing: stainless steels, alloy steels, titanium alloys, etc.

② Suitable conditions: for high-speed milling and turning tools, especially in cases where high wear resistance is required.

③ Representative tools: Sandvik GC1125 series blades, Walter WKK10 series blades.

(2) Titanium Carbide Content 15% – 20%

At this ratio, the content of titanium carbide is further increased, significantly improving the tool’s hardness and wear resistance, suitable for processing under extreme conditions.

① Suitable for processing: high-temperature alloys, hard metals, nickel-based alloys, etc.

② Suitable conditions: for heavy-duty cutting tools, precision milling cutters, especially for processing under high-temperature and high-stress conditions.

(3) Titanium Carbide Content 20% – 25%

This high proportion of titanium carbide is used for tools that require extremely high hardness and heat resistance, particularly suitable for use in extreme high-temperature and heavy-duty processing conditions.

① Suitable for processing: ultra-high-temperature alloys, composite materials, corrosion-resistant materials, etc.

② Suitable conditions: for high-temperature coated tools in aerospace, nuclear industry, and other fields, as well as high-precision cutting tools.

cutting tools

Gaining a deep understanding of the proportions of tool materials and making the optimal choice using a rational and scientific approach inherently reflects the scientific spirit of cutting machining professionals. The scientific spirit is not only about the thirst for knowledge and rigor in details, but also about the dedication to technological research and the pursuit of precision. Upholding the scientific spirit, cutting machining professionals continuously drive the progress of the manufacturing industry.What are the important proportions of cemented carbide materials?

發(fā)表評(píng)論

電子郵件地址不會(huì)被公開。 必填項(xiàng)已用*標(biāo)注

久久国产精品亚洲va麻豆-嫩模大尺度偷拍在线视频-免费三级在线观看自拍-天堂av在线男女av| a在线观看视频在线播放-81精品人妻一区二区三区蜜桃-国产午夜福利片一级做-在线观看亚洲视频一区二区| 天堂亚洲国产av成人-野花视频在线观看免费-在线播放h视频的网站-僧侣交合的夜晚在线观看| 免费人成视频在线观看播放网站-日韩精品久久精品三级-91精品一区二区三区久久蜜桃-中文字幕av久久激情亚洲精品| 国产高清丝袜av综合-精品亚洲一区二区在线-国产丝袜大长腿精品丝袜美女-日本熟女午夜福利视频| 亚洲欧美日韩另类影院-亚洲一区二区三区精品春色-精品人妻久久一品二品三品-人妻有码av中文字幕久久午夜| 97人看碰人免费公开视频-亚洲熟女热女一区二区三区-91精品国产综合久久蜜桃内射-蜜桃视频在线观看免费网址一区| 成人福利一区二区视频在线-亚洲婷婷综合久久一本伊一区-日本高清午夜一区二区三区-日韩欧美黄色激情视频| 日本在线有码中文视频-精品亚洲综合一区二区三区-国产午夜福利一级二级三级-天堂三级成人久久av| 99久久亚洲综合网精品-久久热福利视频在线观看-日韩av人妻中文字幕-日本一区二区三区视频在线播放| 在线十八禁免费观看网站-久久99久国产精品黄毛片色诱-日韩高清av在线观看-亚洲黄香蕉视频免费看| 久久只有这里的精品69-亚洲欧洲av黄色大片-人妻少妇被黑人粗大爽-成人性生交大片免费看av| av福利在线播放网站-午夜福利在线观看精品-久久精品女人av天堂-日本中文字幕在线乱码| 久久夜色国产精品亚洲-国产视频一区二区三区免费观看-亚洲一区二区成人在线观看-日韩精品一区二区三区在线视频| 白白色视频国产在线观看-美女高潮无套内谢视频日韩-成人能看的性生活视频大全-中文字字幕在线亚洲乱码| 精品国产高清一区二区广区-午夜少妇激情视频网站-亚洲av日韩精品一区在线-青草亚洲免费在线观看| 中文字幕亚洲天堂第一页-国产午夜福利在线视频-亚洲精品中文字幕女同-亚日韩精品一区二区三区| 国产老熟女精品视频大全免费-精品丰满熟女一区二区蜜桃-亚洲自国产拍性生活自拍-中文字幕熟女激情50路| 亚洲av男人的天堂久久精品-人妻中文字幕一区二区视频-国产男女乱淫真视频播放-国内人妻自拍交换在线视频| 女人高潮久久久久久久久-久久久国产熟女一区二区三区-91在线精品国产丝袜-国产精品日韩亚洲一区二区| av免费在线观看网站大全-日本av一区二区三区视频-国产精品日韩一区二区在线-亚洲av永久精品一区二区三区| 伊人久久大香线蕉综合av-久久久中文字幕人妻精品一区二区-青草在线免费观看视频-国产清纯白嫩美女蜜臀av| 拉风色国产精品一区二区三区-av一级不卡手机在线观看-亚洲欧美日韩国产色另类-青青草伊人视频在线观看| 手机亚洲av网站在线-怡红院亚洲第一综合久久-国产精品日本一区二区在线看-粉嫩蜜臀人妻国产精品| 欧美日韩偷拍丝袜美女二区-精品少妇人妻av免费久久洗澡-四虎精品永久在线观看视频-亚洲国产成人一区二区在线观看| 青草青青视频精品在线-久热这里只有精品视频免费-免费av一级国产精品-尤物视频网站在线播放| 婷婷激情五月天第四色-岛国片av在线免费观看-久久综合久久一区二区-91青青草原免费观看| 亚洲乱码中文字幕综合-欧美日韩亚洲综合久久精品-美女隐私无遮挡免费网站-国产精品激情av在线播放| 熟女人妻中文字幕在线视频-91久久成人精品探花-国产精品黄色一区二区三区-99精品国产99久久久久97| 日本大黄高清不卡视频在线-亚洲色图视频在线观看免费-国内精品自拍视频在线观看-av免费在线观看看看| 亚洲天堂男人的天堂在线-亚洲激情欧美日韩在线-国产av剧情精品老熟女-色老头与人妻中文字幕视频| 国产一级r片内射视频播放-中文字幕最新精品资源-久久青青草原精品国产麻豆综合-深夜成人在线免费视频| 亚洲黄片免费观看高清-精品国产中文字幕av-60分钟三级全黄50岁-国产精品东北重口变态| 中文字幕乱码一区在线观看-少妇高潮视频免费观看-日本一区二区三区不卡在线-国产精品网红在线播放| 大屁股丰满肥臀国产在线-亚洲国产一区二区精品在线观看-久久黄色精品内射胖女人-日韩精品国产综合一区二区| 日韩av高清不卡一区二区-国产亚洲性色av大片久久香蕉-国产亚洲欧美韩国日本-国产精品国产三级国产普通话对白| 国内自拍偷拍视频91-日本成人熟女一区二区三区-国产l精品国产亚洲区久久-久久精品成人中文字幕| av网站在线观看网站-最新国产欧美精品91-国产一区二区三区在线导航-日韩高清在线中文字幕一区| 欧美日韩你懂的在线观看-国产欧美日韩亚洲一区二区-国产无遮挡裸体免费久久-亚洲国内精品久久久久久| 久久精见国产亚洲av高清热-国产一区国产二区亚洲精品-99久久精品视频一区二区-91精品亚洲欧美午夜福利| 日本成熟人妻在线看片-亚洲国语精品激情在线-欧美性生活之欧美日韩-成人黄色av在线观看|