色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Titanium alloy and aluminum alloy are similar in the following aspects: both metals are used to manufacture aircraft structural parts, in which case 90% of the materials may need to be ground off before the parts are completed. Many stores may want these metals to have more in common.

Aircraft manufacturers, who are good at machining aluminum, find that they process much more titanium because newer aircraft designs use more titanium.

As far as we are concerned, we will say that titanium is not necessarily difficult, but the whole processing process must be considered, because any one factor may hinder the effectiveness of the whole process.

Stability is the key. When the tool contacts the workpiece, it closes a circle. The tool, carriage, spindle, column, guide rail, table, fixture and workpiece are all part of the circle and part of the required stability. Other important considerations include the pressure and volume of the coolant, as well as the method of delivering the coolant. This paper focuses on methods and applications. In order to give full play to the potential of these processes and make them have the potential to process titanium productively, the following suggestions are useful:

1. Keep Radial Engagement Low

One of the key challenges for titanium is cooling. In this kind of metal, the heat generated in the process of processing is relatively less discharged with the chip. Compared with other metals, a larger proportion of heat enters the tool during titanium processing. Because of this influence, the choice of radial meshing determines the choice of metal surface velocity.

The chart in Figure 1 shows this. Full notching (i.e., 180 degree engagement) requires a relatively low surface speed. But reducing the radial engagement reduces the time that the cutting edge generates heat and allows the cutting edge more time to cool before the next rotation enters the material. Therefore, due to the reduction of radial engagement, the surface velocity can be increased while maintaining the temperature at the cutting point. For finishing, a milling process consists of a very small contact arc with a sharp, honed cutting edge and a high surface speed and minimum feed per tooth to achieve extraordinary results.

10 Useful Tips for Titanium Milling 2

Fig1. keep radial engagement low

2. Increase Flute Quantity

Commonly used end mills have four or six grooves. In titanium, this may be too little. A more efficient number of flutes can be 10 or more (see Figure 2).

Increasing the number of flutes makes up for the low feed per tooth. In many applications, the groove spacing of the ten hole tool is too tight for the chip gap. However, the productive milling of titanium has tended to have a lower radial depth (see tip 1). The resulting microchip is open to the free use of high-throughput counting end mills to improve productivity.

10 Useful Tips for Titanium Milling 3

Fig2. Increase flutes quantity

3. Make a Thick-to-Thin Chip

Climbing milling is a familiar term for this concept. In other words, do not feed the milling cutter, so that the blade will pass through the material in the direction of the cutter feed. Known as traditional milling, this process makes chips thinner and thicker. When the tool strikes the material, the friction creates heat before the material begins to shear from the base metal. Instead of absorbing and exhausting the heat generated, the sheet enters the tool. Then, at the exit point, the chip is thick, increasing the cutting pressure to make the chip stick.

Climb milling—or thick-to-thin chip formation—starts with the cutting edge entering the excess material and exiting on the finished surface (see Figure 3). On side milling, the tool tries to “climb over” the material, creating a thick chip on entry for maximum heat absorption and a thin chip on exit to prevent chip adhesion. 

鈦銑削的 10 個有用技巧 4

Fig3. make a thick-to-thin chip

Profile milling requires careful examination of the tool path to ensure that the tool continues to enter the excess material in this way and exit the machined surface in this way. It’s not always as easy to do this in a complex pass as just keeping the material right.

4. Arc In

10 Useful Tips for Titanium Milling 5

In titanium and other metals, tool life is lost in the dramatic changes in force. These worst moments usually occur when tools enter the material. Feeding the tool directly (which almost all standard tool paths do) produces an effect similar to hitting the cutting edge with a hammer. And slide the tool in gently. To do this, create a tool path so that the tool arc enters the material, not in a straight line (see Figure 4). The arc entry path allows the cutting force to increase gradually to prevent gripping or tool instability. The generation of heat and chips also increases gradually until the tool is fully involved in cutting.

Fig.4 arc-in

5. End on a Chamfer

The impact force also changes at the tool exit. As useful as thick to thin cutting (tip 3), the problem with this method is that when the tool reaches the end of the weld bead and begins to remove the metal, the thick to thin formation stops abruptly. A sudden change will produce a similar sudden change in force, impacting the tool and possibly damaging the part surface. In order to prevent such a sudden transition, preventive measures should be taken. First, a 45 degree chamfer should be milled at the end of the pass so that the cutter can see the radial cutting depth gradually decrease (see Fig. 5).

10 Useful Tips for Titanium Milling 6

Fig.5 end on a chamfer

6. Rely on Secondary Relief

A sharp cutting edge can minimize the cutting force of titanium, but the cutting edge also needs to be strong enough to resist the cutting pressure. Secondary relief tool design, the first positive front area resistance, followed by the second area to increase the gap, to achieve these two goals (see Figure 6). Secondary rescue is a common tool, but different secondary relief designs in titanium, especially in test tools, may reveal changes in cutting performance and tool life.

10 Useful Tips for Titanium Milling 7

Fig.6 secondary relief tool design

7. Alter the Axial Depth

At the cutting depth, oxidation and chemical reactions can affect the tool. If the tool is reused at the same depth, early damage may occur at this point. In continuous axial cutting, this damaged area of the tool may cause work hardening, as well as lines on parts unacceptable to aerospace components, which means that this effect on the surface may require tool replacement in advance. To prevent this, the maintenance tool allocates different points in the problem area along the flute (see Figure 7) by changing the axial depth reduction for each pass, and a similar result can be passed through the first cone turning and the subsequent passes in parallel to prevent the cutting depth cutting.

10 Useful Tips for Titanium Milling 8

Fig.7 axial depth reduction changed by allocating different points in problem area

8. Limit the Axial Depth Around Slender Features

Scale 8:1 helps to remember the thin-walled and unsupported features in milling titanium. In order to avoid deformation of the bag walls, these walls are milled in a continuous axial phase instead of using a single end mill to mill the entire wall depth. Specifically, the reduction of the axial depth of each step should not be greater than 8 times the wall thickness, which will make these milling after passing (see Figure 8). If the wall thickness is 0.1 inch, for example, milling through adjacent axial depths should not exceed 0.8 inch.

10 Useful Tips for Titanium Milling 9

Fig.8  ratio of axial depth to thickness of the wall is less than 8:1

Despite the depth limitations, it is possible to use this rule so that productive milling is still possible. For this purpose, the thin wall is processed so that the rough raw material shell remains around the wall, making the feature 3 or 4 times thicker than the final feature. For example, the 8-1 rule allows an axial depth of 2.4 inches if the wall is kept 0.3 inches thick. Through these channels, the thick wall is machined to the final dimension with a lighter axial depth.  

9. Choose a Tool Much Smaller than the Pocket

Due to the extent to which the tool absorbs heat in titanium, the tool requires clearance to allow cooling. When milling small grooves, the diameter of the tool should not exceed 70% of the groove diameter (or similar size) (see Figure 9). If the gap is less than this value, it is possible to insulate the tool from the coolant and trap debris that may take some of the heat away.

鈦銑削的 10 個有用技巧 10

The 70% rule can also be applied to milling tools at the top of the surface. In this case, the width of the feature should be 70% of the tool diameter. The tool is offset by 10% to encourage the creation of thick and thin chips.

Fig9. choose a tool much smaller than the pocket

10. Take a Cue from Tool Steel

The high feed milling cutter is a tool concept developed for machining tool steel in the mold industry in recent years. It has been used to process titanium in recent years. The high feed mill requires a light axial cutting depth, but when operating at this light depth, the cutter allows a higher feed rate than the conventional design of the milling cutter.

10 Useful Tips for Titanium Milling 11

The reason is that the chips become thinner. The key to a high feed mill is a blade with a large radius curve to its cutting edge (see Figure 10). This radius extends chip formation to a large contact area at the edge. Due to thinning, an axial cutting depth of 0.040 inch may produce a chip thickness of only about 0.008 inch. In titanium alloy, this kind of sheet overcomes the disadvantage of low feed per tooth which is usually required by this metal. The thinning of the chip opens the way for higher programming feed speed.

Fig10. the steel of tool will tell

發(fā)表評論

電子郵件地址不會被公開。 必填項已用*標注

国产 av 一区二区三区-日韩黄色三级三级三级-久久精品视频这里只有精品-日韩精品中文字幕亚洲| 熟妇久久人妻中文字幕-国产精品久久久久精品三级人-亚洲蜜臀人妻中文字幕-国产一区二区内部视频| 国内自拍精品视频在线-欧美黑人巨大一区二区三区-中文字幕日韩精品人妻-婷婷激情五月天中文字幕| 精品国产乱码一二三区在线-精品国产一区二区在线视-国内男女精品一区二区三区-亚洲中文字幕国内精品| av福利在线播放网站-午夜福利在线观看精品-久久精品女人av天堂-日本中文字幕在线乱码| 国产大奶子在线播放免费-中文字幕在线观看精品亚洲-日韩欧美精品一区二区三-国产手机av免费在线观看| 亚洲一区日韩精品在线观看-精品人妻少妇一区二区免费蜜桃-国产三区四区五区在线观看-真正国产熟女免费视频| 国产精品一区二区在线观看免费-日本老熟妇色视频免费-亚洲码国产精品高潮在线-日韩一区二区三区日韩| 四虎在线精品视频免费播放-日韩女同av在线观看-av日韩黄片在线播放-日本人体午夜福利视频| 亚洲熟女少妇中文字幕-日韩精品一区二区三区激情视频-一个人看的视频在线播放-亚洲综合一区二区国产精品| 少妇裸淫交视频免费看-欧美日韩中文字幕第一页-91精品看黄网站在线观看-国产精品一区二区三区色噜噜| 加勒比大香蕉优优久久-国产av精品国语对白国产-亚洲一区二区免费日韩-国产一级内射无挡观看| 国产免费不卡一区二区-亚洲中文日韩一区二区三区-狂干亚洲老熟女性视频-亚洲精品午夜福利久久| 日韩午夜精品免费视频-真实国产精品自拍视频-91麻豆精产国品一二区灌醉-一本色道久久综合亚洲精品东京热| 亚洲永久在线宅男天堂-精品亚洲成a人在线看片-国产精品人成免费国产-亚洲欧洲国产精品自拍| 看女人毛茸茸下面视频-日本一区二区黄色高清电影-隔壁人妻偷人中字免费-亚洲中国美女精品久久久| 亚洲一区二区三区四区中文字幕-精品久久久久久蜜臀-国产传媒视频免费观看网站-国产三级在线观看一区二区| 亚洲欧美日韩不卡视频-四虎永久在线精品免费看-久久av丰满熟妇极品-亚洲国产精品中文字幕一区| 麻豆视频传媒在线免费看-亚洲性码不卡视频在线-岛国av色片免费在线观看-久久久国产精品视频大全| 国产免费无套精品视频-日本特色特黄aaa大片免费-日本精品免费一区二区三区-九九热精品视频在线免费| 极品国产粉嫩18尤物在线播放-中文字幕av人妻在线-国产一区二区三区乱码在线-最新亚洲av日韩av| 99精品国产在热久久婷婷人-黄色av一区二区在线-精品一区二区三区中文字幕在线-久久91国产人妻熟女| 国产成人一区二区免费av-国产成人精品一区二区不卡-亚洲乱码精品一区二区在线-青草视频免费在线观看尤物| 亚洲国产综合成人久久-日本一区二区三区精彩视频-激情四射五月天亚洲婷婷-人妻高清视频一区二区三区| 少妇人妻上班偷人露脸-欧美中文字幕乱码视频-欧美韩日本一本交道免费-国产一区,二区,三区免费视频| 成人午夜在线免费播放-97精品在线观看免费-亚洲av一级片在线观看-国产原创自拍看在线视频| 日韩av不卡一区二区-国产白丝精品91久久-午夜福利理论片在线播放-国产粉饼哪个牌子好用| 免费蜜臀av一区二区三区人妻-亚洲熟女少妇精品久久-国产精品毛片免费观看-亚洲精品国产二区中文字幕| 粉嫩精品一区二区三区在线观-中文国产精品久久久私一本-熟女少妇日韩亚洲av-精品国产一区二区三广区精东| 精品久久激情中文字幕-扒下语文老师的丝袜美腿-日韩欧美精品在线免费看-国产成人亚洲精品在线| 国产成人综合中文字幕-中文字幕午夜五月一二-在线视频精品一区二区三区-久久96精品国产亚洲av蜜臀| 尤物视频在线观看精品-日韩午夜男女爽爽影院-日本少妇下面好紧水多影片-国产亚洲精品视频在线网| 日韩少妇高潮免费在线观看-亚洲中文字幕乱码在线观看-日本高清一区二区三区高清-亚洲午夜天堂av毛片| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 成人国产精品中文字幕-国产馆在线精品极品麻豆-国产极品视频一区二区三区-国产一区二区三区无遮挡| 追虎擒龙国语高清在线观看完整版-色婷婷一区二区三区免费-网友自拍在线视频国产-草草久在线视频在线观看| 日本道二区二区视频-精品熟女视频一区二区三区国产-国产地区国产地区视频91-亚洲欧洲日产国码综合在线| 亚洲一区二区三区日本久久-精品国产成人一区二区不卡在线-91精品国产色综合久久成人-一区二区三区成人在线观看| 亚洲成人av综合在线-日韩精品久久久中文字幕人妻-国产精品无套白嫩剧情-五月婷婷久久激情综合| 极品尤物高颜值女神露脸-免费视频一区二区三区美女-麻豆av国语对白麻豆-亚洲精品国产午夜精品| 青草精品在线视频观看-色呦呦在线观看中文字幕-国产一区二区日本在线观看-草青青在线视频免费观看|