色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Progressive die is the representative of precision stamping die. Its characteristics of high speed, high efficiency and high precision make it widely used in the production and manufacturing of precision micro electronic parts, and more and more medium and large parts are also manufactured by precision progressive die. However, this high-speed, high-precision, small and mass work requirements also pose a challenge to the strength and wear resistance of the die. Die wear will reduce product accuracy and die life. Shutdown grinding or die fracture will delay working hours, reduce production efficiency and increase production cost. Therefore, improving die strength and wear resistance means reducing cost and improving production efficiency.

Die material is the main factor determining die strength and wear resistance. There are many reasons for die failure, including die structure, die processing technology and die working conditions, but in the final analysis, the direct factor leading to die wear and fracture failure is the strength and toughness of the material itself. Cemented carbide materials are widely used in precision progressive dies because of their high strength, high toughness and high wear resistance. With the improvement of stamping speed, stamping accuracy and die life of precision progressive die, people have higher and higher requirements for cemented carbide materials.

Researchers at home and abroad are studying the wear failure mechanism, causes and wear-resistant measures of cemented carbide progressive die from various angles. Most of them study cemented carbide grading from the perspective of external macro factors die failure.

In this paper, the causes of fracture failure of wc2co cemented carbide progressive die are studied from the microscopic point of view through metallographic test and combined with the properties of the material itself

Study on wc2co cemented carbide

Wc2co cemented carbide is a composite material composed of refractory metal carbide and bonded metal cobalt produced by powder metallurgy. Cobalt is one of the iron group elements. It is a cemented metal for making cemented carbide. Due to the good lubricity and adhesion of CO to hard phase WC and the large solubility of hard phase WC in CO, wc2co cemented carbide has excellent properties such as high strength, high hardness and high wear resistance. The strength of cemented carbide is much higher than that of each single component. For this phenomenon, many scholars have made a very in-depth study and put forward some theoretical explanations that we basically agree with.

Dawihl and other scholars in Germany put forward the cemented carbide skeleton theory and its modified skeleton theory. They believe that during cemented carbide briquetting sintering, the carbide particles form an interconnected aggregate skeleton, and the gap of the skeleton is filled with mutually penetrating bonding phase Co. the properties of cemented carbide are caused by the carbide skeleton strengthened by co phase. The skeleton theory also holds that when the strength of carbide skeleton is sufficient,

The more uniform the distribution of CO phase, the higher the fracture resistance of the alloy; When the local co phase falls off, the skeleton of the hard phase will be easily damaged and the strength of the alloy will be reduced. Therefore, the content and distribution of CO phase have an important influence on the properties of cemented carbide.

Gurland et al. Put forward the film theory and believed that the carbide particles are surrounded by continuous co film, and the co film will play an important role in the strength of high adjacent carbide grains. The particle reinforcement theory proposed in China holds that the theoretical strength of carbide and co materials is actually very high. Only because of a large number of crack defects in the material, the actual strength of the material is far less than the theoretical strength. However, when the particle size of the two materials is reduced to a certain extent and mixed evenly, the probability of crack defects in the two groups will be doubled, and the actual strength of the two groups can be greatly improved. Therefore, as long as the distribution and particle size of WC grains and co layers are controlled, the theoretical strength of components can be brought into full play. Therefore, structural defects that do not conform to the composite concept, such as coarse carbide grains, CO pool and local loss of CO, will affect the exertion of particle reinforcement,

The strength and other properties of cemented carbide are reduced. From the above theoretical research, it can be seen that the content and distribution uniformity of CO phase materials have an important impact on the strength of wc2co cemented carbide materials. When the co phase materials are damaged or partially missing or partially stacked, the strength of cemented carbide will also be damaged.

metallographic examination of fractured punch

In this study, the punch broken under normal wear after high-speed blanking is taken as a sample. The sample comes from a precision parts manufacturing company in Shenzhen, and the punch material is cemented carbide cd750. At l EO 1530vp Electronics

The microstructure and composition of the samples were observed by scanning microscope and inca300 energy spectrometer. Figure 1 is the morphology of the broken punch. It can be seen from the figure that the broken mouth of the die is uneven and the fillet on the side of the die is displayed. The wear is very serious.

What Causes the Breakage of Cemented Carbide Precision Progressive Dies? 2

Fig. 1 fracture morphology of punch

Fig. 2 is the microstructure diagram of the central part of the fracture, in which massive WC particles are stacked compactly and orderly with clear edges and corners; Because the central part is not affected by wear and lubricant corrosion when the die is working, this study considers that the organizational structure and composition of the central part are exactly the same as that of the original material.

What Causes the Breakage of Cemented Carbide Precision Progressive Dies? 3

Fig. 2 microstructure of the central part of the fracture

Most cemented carbide precision progressive dies are ground. Figure 3 shows the working surface of the die. Compared with the base material shown in Figure 2, obvious grinding marks can be seen. The sharp edges and corners of WC block are ground flat and the surface is flat.

What Causes the Breakage of Cemented Carbide Precision Progressive Dies? 4

Figure 3 working surface of die

Fig. 4 is the microstructure of the die working surface at the die fracture. In the figure, the traces of grinding of WC block are greatly reduced, while the traces of falling off of WC block (part shown in elliptical frame) are very obvious, resulting in the exposure of WC block without grinding inside, and the working surface of the die is uneven and the boundary is fuzzy.

What Causes the Breakage of Cemented Carbide Precision Progressive Dies? 5

Fig. 4 microstructure of die surface at fracture

Fig. 5 is the energy spectrum analysis result of the central part of the fracture shown in Fig. 2, and Fig. 6 is the energy spectrum analysis result of the die working surface at the fracture shown in Fig. 4. From the comparison of energy spectrum peaks, it can be found that the peak value of W component in the working surface part of the die is significantly higher than that in the central part, while the peak value of CO component is lower than that in the central part. The relative detection of the content values of the two components also found that in the central part of the fracture, the content of W accounted for 75% and the content of CO accounted for 25%; On the working surface of the die at the fracture, the content of W is 91.93%, while the content of CO is only 8.07%. Since the microstructure and composition of the central part are exactly the same as that of the original material, it can be explained that the content of bonding phase CO on the working surface of the die at the fracture is significantly reduced compared with that of the original cemented carbide material.What Causes the Breakage of Cemented Carbide Precision Progressive Dies? 6

Fig. 5 peak energy spectrum detection of die working surface at fracture

What Causes the Breakage of Cemented Carbide Precision Progressive Dies? 7

Fig. 6 peak value of energy spectrum detection at the center of fracture

 fracture analysis

The direct cause of die fracture is the insufficient strength and toughness of the material. From the previous study on the properties of wc2co cemented carbide, it can be known that the strength and toughness of cemented carbide largely depend on the content of CO and bonding condition.

In the fracture convex pattern parts, the surface wear causes the loss of Co element, and the content of CO component is obviously reduced. The loss of CO destroys the continuity of WC hard phase skeleton, and the bonding state of WC block changes accordingly. When the loss of CO phase around the surface WC block reaches a certain degree, the bonding and composite reinforcement effect of CO relative to WC particles will be greatly weakened or even disappear, resulting in WC particles falling off from the material matrix and forming pits on the die surface, At the same time, the WC block inside the die without grinding is also exposed, which destroys the original hard phase skeleton structure; The exposed WC block with sharp edges and corners reduces the wear resistance of the cemented carbide and accelerates the wear of the cemented carbide; This also further accelerated the loss of Co. the falling off cycle of CO and WC particles continued to expand, resulting in the reduction of the toughness and strength of the material at this part until it reached the limit, so the die broke there.

Conclusion

The micro morphology of the working surface of the die at the fracture mouth was observed and compared with the original material morphology and the original grinding working surface of the die; The composition differences of CO and W in the working surface of the die at the fracture mouth and the original cemented carbide material are compared by EDS, and the following conclusions are obtained:

(1) The content and distribution uniformity of CO phase elements have an important impact on the properties of wc2co cemented carbide. The loss of CO will directly lead to the decline of the properties of wc2co cemented carbide.

(2) In the process of high-speed blanking, after the cemented carbide die is worn, the die surface is uneven and the skeleton structure is damaged due to the falling off of CO and WC particles.

(3) Under the condition of high-speed blanking, the die wear shows that the content of Co element is significantly reduced, and the bonding and composite strengthening effect of CO relative to WC hard phase is weakened, which reduces the strength and toughness of the material, accelerates the material wear, and leads to die fracture. 

31 May, 2022

Kal?p alan?nda kullan?lmas?n? tavsiye etti?iniz karbür nedir. Yo?unluk bak?m?ndan GB ka? olmal?d?r? Not: Pres bask? esnas?nda ?ekil verdi?i malzeme pirin?’tir. Te?ekkürler

31 May, 2022

Hello Muhsin,
Thanks for your comment.
We would recommend low cobalt around 6-8% for carbide drawing dies and high cobalt 15-25% for carbide cold heading dies.
The density is around 13.5-14.5 g/cm^3.
If you have any inquiries, feel free to contact us at [email protected]
Best regards,
Tim

Leave a Reply

Your email address will not be published. Required fields are marked *

国产一区二区三区四区在线播放-国语精品国内自产视频-可以免费看黄的网久久-久久久亚洲av三吉彩花| 国产大奶子在线播放免费-中文字幕在线观看精品亚洲-日韩欧美精品一区二区三-国产手机av免费在线观看| 精品视频人妻少妇一区二区三区-人妻中文字幕一二三区-日本老熟妇成熟老妇人-东京热国产精品二区三区| 视频一区二区不中文字幕-亚洲av色香蕉一区二区三区妖精-国产91精品在线观看懂色-国产一区二区三区不卡在线看| 18禁无遮挡美女国产-久久精品国产精品亚洲毛片-国内精品极品在线视频看看-日本二区 欧美 亚洲 国产| 日本道二区二区视频-精品熟女视频一区二区三区国产-国产地区国产地区视频91-亚洲欧洲日产国码综合在线| av天堂一区二区三区在线观看-一区二区三区在线观看蜜桃-激情在线免费观看国产视频-国产精品国产三级国产三不| 成人午夜伦理在线观看-国产一级做a爰片久久-亚洲精品av一区二区三区-国产色区一区二区三区| 国产精品国产亚精品不卡-欧美淫淫基地电影网站-亚洲高清精品人妻偷拍-四虎精品永久在线播放| 久久99国产欧美精品-深夜宅男宅女在线观看-骚虎三级在线免费播放-精品国模人妻视频网站| 国产激情久久久久成熟影院-成人午夜免费在线视频-亚洲中文字幕成人综合网-色噜噜精品视频在线观看| 欧美日韩激情免费观看-成年大片免费视频观看-俺来也去也网激情五月-在线国产精品自偷自拍| 亚洲视频第一页在线观看-最新中文字幕国产精品-中文人妻熟妇人伦精品熟妇-国产福利91在线视频| 亚洲欧美成人影院网址-在线观看视频一区二区三区三州-成人自拍视频免费在线-国产精品蜜臀视频视频| 国产在线一区二区三区视频-国产一区二区三区成人18禁-国产精品自偷一区在线观看-熟女人妻片濑仁美在线| 亚洲天堂成人av影院-日韩精品国产一区在线久草-欧美国产另类久久久精品-91午夜精品久久香蕉| 3p人妻一区二区三区-亚洲精品国产高清自拍-女同国产日韩精品在线-亚洲午夜国产激情福利网站| 国产精品第五页在线观看-亚洲欧美日韩丝袜另类一区-国产懂色av一区二区三区-午夜亚洲欧美日韩在线| 久99久热这里只有精品-日韩av一区二区三区播放-天堂日韩av在线播放-中文字幕被侵犯的人妻| 亚洲香蕉久久一区二区三区四区-国产夫妻内射一级一片-成人午夜福利片免费观看-一区二区三区四区黄色网| 国产在线一区二区三区视频-国产一区二区三区成人18禁-国产精品自偷一区在线观看-熟女人妻片濑仁美在线| 人妻日韩人妻中文字幕-日韩情色中文字幕在线-日韩av大全在线观看-日韩少妇高潮视频免费看| 午夜激情小视频在线观看-日本福利视频免费观看-日本人妻久久精品欧美一区-国产成人自拍小视频在线| 狠狠久久五月综合色和啪-日韩精品欧美一区二区三区软件-亚洲女同精品一区二区久久-国产传媒在线视频免费观看| 精品国产中文字幕在线视频-性生活视频在线观看欧美-成年人免费黄片内射国产-国产欧美另类精品久久久| av毛片天堂在线观看-亚洲av成人午夜亚洲美女在线-九九久久精品国产免费av-亚洲av永久精品免费| 国产丝袜爆操在线观看-亚洲老熟妇日本五十六十路-亚洲av乱码久久亚洲精品-综合激情四射亚洲激情| 少妇人妻偷人偷人精品-国产精品黄色在线播放-亚洲熟伦熟女新五十路熟妇亚洲-国产综合91精品百人斩| 国产大奶子在线播放免费-中文字幕在线观看精品亚洲-日韩欧美精品一区二区三-国产手机av免费在线观看| 丰满女性丰满女性性教视频-国产日韩欧美精品av-日韩区一区二区三区在线观看-四虎国产精品成人免费久久| 国产精品第五页在线观看-亚洲欧美日韩丝袜另类一区-国产懂色av一区二区三区-午夜亚洲欧美日韩在线| 国产人妖直男在线视频-午夜福利视频合集91-亚洲五月自拍欧美第一页-国产主播免费在线一区二区| 欧美av黄片在线观看-黄片国产一级片在线观看-国产精品黄色精品黄色大片-一区二区三区国产日本欧美| 你懂的视频网站亚洲视频-欧美色欧美亚洲另类搞逼-国产三级精品三级精品在一区-亚洲国产午夜精品在线| 你懂的视频网站亚洲视频-欧美色欧美亚洲另类搞逼-国产三级精品三级精品在一区-亚洲国产午夜精品在线| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 在线精品日韩一区二区三区-国产免费人成网站在线观看-白白发布视频一区二区视频-乱妇乱女的熟妇熟女色综合| 日韩av毛片在线播放-亚洲一区二区在线观看网站-18禁网站在线免费观看-亚洲精品夜夜黄无码99| 亚洲国内精品一区二区在线-亚洲国产成人精品青青草原-精品在线视频免费在线观看视频-亚洲美女激情福利在线| 精品人妻一区二区三区免费-亚洲国产精品久久一区二区-国内久久偷拍视频免费-蜜桃视频在线观看网址| 中出 中文字幕 久久-成人午夜大片免费在线观看-免费观看黄欧美视频网站-午夜福利观看在线观看|