色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The temperature generated within the cutting zone during metal cutting can reach as high as 800 to 900 ℃. Within this cutting zone, the cutting edge deforms the workpiece material and removes it. In continuous turning operations, heat is generated in a stable linear manner. In contrast, milling cutters intermittently engage and disengage with the workpiece material, causing the temperature of the cutting edge to alternate between rising and falling.

The components of the machining system absorb the heat generated during the metal cutting process. Typically, 10% of the heat enters the workpiece, 80% goes into the chips, and 10% enters the tool. Ideally, most of the heat is carried away by the chips, as high temperatures can shorten the tool life and damage the machined parts.

Let’s take milling as an example to analyze the factors that affect cutting heat and tool life, as well as how to improve them. The different thermal conductivity of the workpiece material and other machining factors significantly influence the distribution of heat. When machining a workpiece with poor thermal conductivity, more heat is transferred to the tool. Materials with higher hardness generate more heat during machining compared to materials with lower hardness. In general, higher cutting speeds increase heat generation, and higher feed rates increase the area of the cutting edge affected by high temperatures.

What are the 5 factors that influence the heat generation in cutting processes? 1

In intermittent cutting conditions, where milling operations are predominant, the selection of tool engagement arc, feed rate, cutting speed, and cutting edge geometry all have an impact on the generation, absorption, and control of heat.

Arc of engagement

Due to the intermittent nature of the milling process, cutting teeth only generate heat during a portion of the machining time. The percentage of cutting time for the teeth is determined by the tool engagement arc of the milling cutter, which is influenced by the radial cutting depth and tool diameter.

Different milling processes have different tool engagement arcs. In slot milling, the workpiece material surrounds half of the tool, and the tool engagement arc is 100% of the tool diameter. Half of the cutting teeth’s machining time is spent on cutting, leading to a rapid accumulation of heat. In face milling, a relatively smaller portion of the tool engages with the workpiece, allowing the cutting teeth to have more opportunities to dissipate heat into the air.

What are the 5 factors that influence the heat generation in cutting processes? 2

 

cutting speed

To maintain the thickness and temperature of the chips in the cutting zone equal to those during full slot cutting, tool suppliers establish compensation factors that increase the cutting speed when the tool engagement percentage decreases.

From a thermal load perspective, a smaller tool engagement arc may result in insufficient cutting time to generate the minimum temperature required for maximizing tool life. Increasing the cutting speed typically generates more heat, but combining a smaller tool engagement arc with a higher cutting speed helps elevate the cutting temperature to the desired level. Higher cutting speeds shorten the contact time between the cutting edge and the chips, thereby reducing the heat transferred to the tool. Overall, higher cutting speeds reduce machining time and increase productivity.

On the other hand, lower cutting speeds can lower the machining temperature. If excessive heat is generated during the process, reducing the cutting speed can bring the temperature down to an acceptable level.

cutting depth

The thickness of the chips has a significant impact on heat generation and tool life. When the chip thickness is too large, it creates excessive load that results in excessive heat and chip formation, and it may even lead to cutting edge fracture. Conversely, when the chip thickness is too small, the cutting process occurs only on a smaller portion of the cutting edge, and the increased friction and heat can cause rapid wear.

What are the 5 factors that influence the heat generation in cutting processes? 3 cutting heat

The thickness of chips generated in milling varies as the cutting edge enters and exits the workpiece. Therefore, tool suppliers utilize the concept of “average chip thickness” to calculate the tool feed rate aimed at maintaining the most efficient chip thickness.

Factors involved in determining the correct feed rate include the tool engagement arc or radial cutting depth and the primary relief angle of the cutting edge. A larger engagement arc requires a smaller feed rate to achieve the desired average chip thickness. Similarly, a smaller engagement arc necessitates a higher feed rate to achieve the same chip thickness. The primary relief angle of the cutting edge also affects the feed rate requirement. When the primary relief angle is 90°, the chip thickness is maximum. Thus, to achieve the same average chip thickness, reducing the primary relief angle requires an increase in the feed rate.

cutting edge groove

The geometric angles and cutting edges of milling cutters contribute to controlling the thermal load. The choice of tool rake angle is determined by the hardness of the workpiece material and its surface condition. Tools with a positive rake angle generate lower cutting forces and heat, allowing for higher cutting speeds. However, tools with a positive rake angle are weaker compared to tools with a negative rake angle, which can generate higher cutting forces and temperatures.

The groove geometry of the cutting edge can induce and control the cutting action and cutting forces, thus affecting heat generation. The cutting edge in contact with the workpiece can be chamfered, dulled, or sharp. Chamfered or dulled edges have higher strength and generate greater cutting forces and heat. Sharp edges can reduce cutting forces and lower machining temperatures.

The back angle of the cutting edge, known as the relief angle, is used to guide the chips. It can be positive or negative. Positive relief angles can simultaneously result in lower machining temperatures, while negative relief angles are designed for higher strength and generate more heat.

Milling is an intermittent cutting process, and the chip control features of milling tools are generally not as critical as in turning operations. Depending on the workpiece material and the engagement arc, the energy required to form and guide the chips may become crucial. Narrow or forced chip control groove geometry can curl up the chips immediately, generating higher cutting forces and more heat. Broader chip control groove geometry can produce lower cutting forces and lower machining temperatures, but may not be suitable for certain combinations of workpiece materials and cutting parameters.

cooling

One method of controlling the heat generated in metal cutting processes is through the application of coolant. Excessive temperature can cause rapid wear or deformation of the cutting edge, so it is essential to control the heat as quickly as possible. In order to effectively reduce the temperature, the heat source must be cooled.

Multiple interrelated factors collectively contribute to the load in metal cutting processes. These factors interact with each other during the machining process. This article explores the issue of heat generation in milling operations and its relationship with mechanical factors. Understanding the various factors involved in generating metal cutting loads and their overall impact will help manufacturers optimize their machining processes and maximize productivity and profitability.

Leave a Reply

Your email address will not be published. Required fields are marked *

亚洲午夜福利在线看片-草草影院在线观看国产-中文字幕在线国产有码-精品99成人午夜在线| 亚洲精品av一区二区日韩-日韩偷拍精品一区二区三区-亚洲欧美熟妇久久久久久-久草视频福利在线观看| 在线视频观看一区二区三区-日韩成年人高清精品不卡一区二区-成人深夜节目在线观看-亚洲精品中文字幕一二三| 日韩熟女av在线观看-中文字幕人妻丝祙乱一区三区-亚洲国产精品第一区二区三区-欧美制服丝袜一区二区三区| 国产精品羞羞答答色哟哟-最新麻豆精品在线视频-丰满多毛熟妇的大阴户-精品国产乱子伦一区二区三女| 日韩毛片精品一区二区-无套内谢少妇高潮毛片些-国产精品午夜激情视频-亚洲天码一区二区三区| 亚洲一区二区三区四区中文字幕-精品久久久久久蜜臀-国产传媒视频免费观看网站-国产三级在线观看一区二区| 女人毛茸茸的外阴视频-成人激情午夜福利视频-国产精品性色一区二区三区-国产中文字幕欧美激情| 亚洲最大的偷拍视频网站-国产三级精品三级男人的天堂-国产成人免费精彩视频-一区二区精品日韩国产精品| 成人午夜伦理在线观看-国产一级做a爰片久久-亚洲精品av一区二区三区-国产色区一区二区三区| 五月六月丁花香激情综合网-久久这里只有精品好国产-很淫很堕落第一版主网-亚洲精品欧美精品国产精品| 日韩精品一区二区蜜桃免费视频-色综合视频一区二区三区-欧美一级黄片视频在线播放-国产精品视频一区二区色戒| 日韩欧美国产在91啦-激情偷拍自拍在线观看-一本大道久久香蕉成人网-亚洲精品中文字幕观看| 日产中文字幕在线精品一区-日韩黄色特级片一区二区三区-8x8x精品国产自在现线拍-内射爆操视频在线观看| 国产 av 一区二区三区-日韩黄色三级三级三级-久久精品视频这里只有精品-日韩精品中文字幕亚洲| 国产老熟女乱子一区二区-欧美日本中国一区二区-欧美日韩国产午夜精品-青青草视频在线观看入口| 国产二区三区视频在线观看-四虎精品一区二区在线观看-国产中文字幕一区二区视频-精品一区二区三区av在线| 女优av天堂中文字幕-国产亚洲精品成人av久-国产黄三级三级三级三级一区二区-日本高清视频不卡一区二区| 久久99精品成人免费毛片-中文字幕日韩精品欧美-免费观看黄片一区视频-国产亚洲蜜臀av在线观看| 亚洲av优女天堂熟女美女动态-激情免费视频一区二区三区-一区二区三区国产日韩av-最新国产内射在线免费看| 少妇高潮了好爽在线观看男-麻豆国产传媒国产免费-欧美三级黄片在线播放-亚洲一区域二区域三区域四| 99热久久热在线视频-久久精品国产亚洲av成人男男-国产精品日韩精品久久99-中文字幕在线日本乱码| 四虎在线精品视频免费播放-日韩女同av在线观看-av日韩黄片在线播放-日本人体午夜福利视频| 欧美国产日本韩国一区二区-麻豆天美东精91厂制片-亚洲成人自拍视频在线观看-娇妻互换享受高潮91九色| 亚洲av色香一区二区三含羞草-av毛片在线观看网站-中文字幕一区二区人妻中文字-91精品人妻日韩一区二区| 久久精品亚洲精品毛片-国产精品白丝在线播放-日韩国产欧美综合第一页-亚洲三a免费观看网站| 女生下面粉嫩在线视频-人妻熟女av国产在线-亚洲精品成人一区二区三区-商场偷拍女厕所撒尿视频| 亚洲综合不卡一区二区三区-中文字幕一区二区人妻秘书-国产免费午夜精品理论-中文字幕人妻精品一区二区| 亚洲精品av一区二区日韩-日韩偷拍精品一区二区三区-亚洲欧美熟妇久久久久久-久草视频福利在线观看| 2023年久久国产精品-亚洲中文字幕二区在线观看-人人妻人人玩人人澡人九色-午夜精品福利视频网站| 欧美极品欧美精品欧美激情-人妻av中文字幕高清版-国产传媒麻豆天美在线观看-免费91麻豆精品国产自产自线| 亚洲伊人色综合网站亚洲伊人-香蕉久久国产超碰青草91-激情综合七月插插综合-亚洲一区二区三区夏目彩春| 乱女乱妇熟女熟妇综合网-亚洲都市激情中文字幕-日韩精品中文字幕在线-在线观看国产中出白浆| 国产精品乱码一区二区三区-亚洲国产日本不卡一卡-日韩av手机免费网站-国产精品日韩在线亚洲一区| 亚洲自拍偷拍另类第一页-麻豆国产午夜在线精品-久久精品一区二区三区综合-日本最近中文字幕免费| 国产精品精品久久99-久久羞羞色院精品全部免费-日韩中文粉嫩一区二区三区-外国黄色三级视频网站| 一区二区三区国产精品女人-日本成人在线视频91-国产午夜福利在线剧场-欧美日韩激情系列在线观看| 无套内射在线免费观看-亚洲日本va中文字幕久-日韩免费人妻av一区二区三区-热久久国产最新地址获取| 成人午夜伦理在线观看-国产一级做a爰片久久-亚洲精品av一区二区三区-国产色区一区二区三区| 国产黑色丝袜在线观看网站-成人a免费大片在线看-熟妇人妻精品一区二区三区视频-日韩av高清不卡一区二区三区| 日本成熟人妻在线看片-亚洲国语精品激情在线-欧美性生活之欧美日韩-成人黄色av在线观看|