色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Wet milling can grind hard phases (mainly WC phase) to the required particle size and achieve a uniform mixing state with Co powder in a small range, which has good compaction and sintering properties. Therefore, the wet milling time is also one of the key parameters in the preparation process of hard alloys. This article mainly studies the influence of wet milling time on the microstructure and properties of hard alloys.

Experimental materials for wet milling and methods

The recycled WC-Co composite powder produced by zinc melting method was used as the experimental material, and its composition is shown in Table 1.

Effects of Wet?milling Time on Microstructure and Properties of YG8(ISO K30) Cemented Carbide 2

Laser particle size analysis showed that the median diameter was 3.46μm, with a narrow range of particle size distribution and relatively concentrated particle size. Figure 1 shows the SEM image of the original morphology of the WC-Co composite powder.

Effects of Wet?milling Time on Microstructure and Properties of YG8(ISO K30) Cemented Carbide 3

From Fig.1, it is evident that the recycled powder has mild agglomeration, and its morphology is mostly triangular or rectangular with smooth edges, retaining the characteristics of WC grains in hard alloys. The average particle size of the powder is about 3μm, which is consistent with the results obtained from laser particle size analysis.

 

Figure 2 shows the XRD spectrum of the WC-Co composite powder.

Effects of Wet?milling Time on Microstructure and Properties of YG8(ISO K30) Cemented Carbide 4

Experimental Results and Discussion about wet milling time

Figure 3 shows the morphology of WC-Co composite powders after different wet milling?times. As shown in Figure 3(a), when wet milling?for 18 hours, the powder size is relatively large and unevenly distributed, indicating that the wet milling?effect is not ideal, and the collision between the grinding balls and the powder in the tank is insufficient, and the powder refinement is not enough. After wet milling?for 24 hours (Figure 3(b)), it was found that the powder size decreased rapidly, and the refinement was obvious, but the uniformity was limited. It can be observed that the powder fragmentation mainly occurred due to the repeated impact and friction of the grinding balls, resulting in the rupture of large particles into smaller particles. Continuing wet milling?until 30 hours (Figure 3(c)), it can be found that there is not much change in the powder size, but the uniformity and morphology have improved, with an average particle size between 1 and 2 μm. This indicates that the powder wet ground for 30 hours has a relatively ideal particle size and morphology. Apart from the rupture, the powder is mainly worn out (WC corners are worn out, producing fine powder). Finally, after wet milling?for 36 hours, it is evident that the powder not only did not refine further but also showed agglomeration phenomenon B (see Figure 3(d)).

wet milling time

 

It should be noted that the powder cannot be infinitely refined during ball milling. During ball milling, as the particle size of the powder decreases, the specific surface area of the powder increases exponentially, exhibiting high surface energy and a sharp increase in reactivity, making it easy to agglomerate and bond with other powders to resist the increase in total energy. As a result, on the one hand, external energy is input into the powder, causing it to refine; on the other hand, the powder agglomerates and forms lumps, reducing the system energy. After the combined effect of these two trends, a dynamic equilibrium is reached between them, and the average particle size of the powder will eventually stabilize within a certain range. In this experiment, the powder was ball milled for 30 hours, and its uniformity was good, with a particle size reaching an equilibrium value (1-2 μm).

Figure 4 shows the XRD patterns of sintered regenerated cemented carbide with different wet milling times. As shown in the figure, when wet milled for 18 hours, the alloy contains impurity phase of elemental carbon (C); as wet milling continues, the elemental carbon disappears. This indicates that the alloy is slightly carburized during wet milling for 18 hours, and as the wet milling time is prolonged, the powder is refined and the surface adsorbs more oxygen, resulting in an increase in the oxygen content of the mixture. During sintering, part of the carbon is consumed, resulting in the formation of a pure two-phase structure of WC and Co in the alloy, and no other impurity phases were found.

Effects of Wet?milling Time on Microstructure and Properties of YG8(ISO K30) Cemented Carbide 5

Figure 5 shows the metallographic images of the cemented carbide after corrosion for different wet milling times. Comparing Figures 5 (a) to (d), it can be seen that under the sintering process (1723 K, pressure), the alloy structure is good, and no defects such as abnormally large WC grains and cobalt pools were found. The grain size of the alloy is slightly smaller with a polygonal morphology after wet milling for 24 hours compared to 18 hours, and the Co phase is evenly distributed. As wet milling continues, there is no significant change in grain size, but the uniformity slightly improves. When wet milled for 36 hours, it was found that the WC grains had slightly grown, which may be related to the partial agglomeration of the powder during wet milling.

Effects of Wet?milling Time on Microstructure and Properties of YG8(ISO K30) Cemented Carbide 6

It is worth noting that as the wet milling?time increases, the strength of the alloy shows a continuous upward trend, but the magnitude of the increase becomes smaller and smaller. Generally, for the same Co content and without obvious defects, the strength of the alloy is related to the distribution of internal micro-pores and WC grain size. When wet milling?for 18 hours, due to the short time, the material mixing is uneven, the powder refinement degree is insufficient, the particle size is large, and the distribution is uneven, resulting in the easy formation of micro-pores during sintering, thus the alloy strength is not high. Continuing wet milling?further breaks down the powder particles, increases the number of fine WC particles, narrows the WC particle size distribution towards homogenization, and eliminates the coarse WC grains, which are the main sources of cracks, resulting in an increase in the bending strength of the alloy.

In WC-Co alloys with the same Co content, the coercive force of the alloy is inversely proportional to the WC grain size and distribution, which is consistent with the description in Figure 5.

Effects of Wet?milling Time on Microstructure and Properties of YG8(ISO K30) Cemented Carbide 7

Figure 6 shows the distribution of flexural strength for regenerated cemented carbides with different wet milling times. Based on Figure 6, the range of strength values for each alloy can be observed, which gives the variation of the strength of the statistical samples. It can be seen from the figure that there are many overlaps and dispersions in the experimental results. It is easy to find that with the extension of wet milling time, not only the strength of the alloy increases, but also the fluctuation range becomes narrower, and each strength value is closer to each other. This indicates that the extension of wet milling time can reduce the discreteness of the strength distribution of regenerated cemented carbides.

 

Conclusion

Under the experimental conditions of this study, the effects of different wet milling?times on the microstructure and properties of recycled WC-8Co composite powder and sintered hard alloys were investigated, and the following conclusions were drawn:

  1. Continuous wet millingfor 30 hours with a ball-to-powder ratio of 3:1 resulted in fine and uniformly distributed composite powder with an average particle size of 1-2 μm, as observed by SEM.
  2. Under the conditions of continuous wet millingfor 36 hours with a ball-to-powder ratio of 3:1 and sintering process (1723 K for 1 hour with a pressure of 5 MPa), the alloy exhibited the best comprehensive properties. Its density was 14.71 g/cm3, HRA90.1, the average strength was 3560 MPa, cobalt magnetism was 7.2%, and coercivity was 15.8 kA/m.
  3. The analysis of the strength distribution of alloys with different wet millingtimes showed that within a certain range, the prolongation of wet milling?time can reduce the discreteness of the strength distribution of recycled hard alloys.

Leave a Reply

Your email address will not be published. Required fields are marked *

精品人妻一区二区三区四区石在线-国产精品国产三级国产三级人妇-午夜激情精品在线观看-一本久道视频蜜臀视频| 日韩成人av在线影院-亚洲五月天久操视频在线观看-最新国产AV无码专区亚洲-欧美日韩大香蕉在线视频| 日本在线无乱码中文字幕-国产美女自拍视频精品一区-精品人妻中文字幕一区二区三区-精品国产一级二级三级| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列| 热99在线视频免费观看-日本老男人同性恋黄色.-精品国产一区二区三区四不卡在线-久亚洲一线产区二线产区三线麻豆| 拉风色国产精品一区二区三区-av一级不卡手机在线观看-亚洲欧美日韩国产色另类-青青草伊人视频在线观看| 久热视频在线免费观看-亚洲一区二区日韩综合久久-免费观看在线观看青青草视频-精品一区二区亚洲一区二区血炼| 成人国产精品中文字幕-国产馆在线精品极品麻豆-国产极品视频一区二区三区-国产一区二区三区无遮挡| 国产亚洲一区二区三区综合片-亚洲天堂日韩精品在线-有码视频在线观看日本专区-亚洲精品成人福利在线| 一本久道视频无线视频试看-亚洲国产精品一区二区三区久久-中文字幕色偷偷人妻久久-久久精品99国产精品中| 亚洲成人av在线播放不卡-亚洲视频一直看一直爽-一区二区三区精品视频日本-精品人妻久久一日二个| av免费在线观看网站大全-日本av一区二区三区视频-国产精品日韩一区二区在线-亚洲av永久精品一区二区三区| 91老熟女老女人国产老太-av在线亚洲av男人的天堂-国产精品久久久区三区天天噜-能看不卡视频网站在线| 九九久久精品国产av-日本高清在线观看一区二区-精品熟女视频一区二区三区-亚洲欧洲成熟熟女妇专区乱| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 99久久精品视频在线-日韩精品免费完整版视频-精品久久久久久久亚洲婷婷综合-久久精品国产亚州av| 一本大道加勒比东京热-国产一二三区亚洲精品美女-国产在线麻豆在拍91精品-久久久久成人亚洲国产| 亚洲av一区二区三区av-国产av一区二区三区香蕉-久久超碰免费欧美人妻-九一精品人妻一区二区三区| 99久久亚洲综合精品成人网-国产性感丝袜在线观看-国产一区二区三区激情啪啪啪-久久香蕉综合国产蜜臀av| 国产精品视频午夜福利-一本大道久久综合一区-成年深夜福利在线观看-国产传媒免费在线视频| 国产福利一区二区写真-久久国产电影在线观看-亚洲国产一区二区三区亚瑟-中文字幕乱码亚洲无线码二区| 在线视频观看一区二区三区-日韩成年人高清精品不卡一区二区-成人深夜节目在线观看-亚洲精品中文字幕一二三| 日韩在线免费av网站-免费啪视频一区二区三区在线观看-久操热在线视频免费观看-91亚洲国产成人精品性色| 九九热久久这里有精品视频-2020亚洲欧美日韩在线-国产精品久久无遮挡影片-亚洲国产高清在线不卡| 在线十八禁免费观看网站-久久99久国产精品黄毛片色诱-日韩高清av在线观看-亚洲黄香蕉视频免费看| 国产特级黄色录像视频-成人亚洲精品专区高清-国产97在线免费观看-91精品青草福利久久午夜| 亚洲91精品麻豆国产系列在线-丝袜美腿诱惑一区二区视频-日本人妻中文一区二区-男女无遮挡啪啪啪国产| 日韩精品视频网在线播放-亚洲综合网一区二区三区偷拍-岛国av在线播放观看-欧美日韩国产另类综合| 亚洲女人性开放视频免费-亚洲婷婷精品久久久久-亚洲中字字幕中文乱码-韩日av不卡一区二区三区| 91精品国产色综合久久不88-黑人性做爰片免费视频看-房事插几下硬不起来了咋治疗-熟女乱一区二区三区四区| 久久夜色国产精品亚洲-国产视频一区二区三区免费观看-亚洲一区二区成人在线观看-日韩精品一区二区三区在线视频| 岛国精品一区二区三区-国产一区二区三区观看不卡av-四虎三级在线视频播放-亚洲乱妇熟女爽到高潮| 少妇高潮真爽在线观看-韩国福利视频一区二区三区-警花av一区二区三区-尤物视频国产在线观看| 国产四虎视频在线观看-日本一区二区三区暖暖视频免费-91人妻人人澡人人添人人爽-在线日本高清日本免费| 国产精品久久三级精品-国产一级一片内射免费播放-一区二区三区国产精品麻豆-国产精品情侣自拍av| 熟女人妻中文字幕在线视频-91久久成人精品探花-国产精品黄色一区二区三区-99精品国产99久久久久97| 日本一区二区三区欧美精品-农村少妇真人毛片视频-亚洲av乱码专区国产乱码-跨年夜爆操极品翘臀日韩| 中文字幕av东京热久久-国产精品日韩精品最新-亚洲激情av免费观看久久-亚洲第一精品国产网站| 在线免费观看四虎黄色av-亚洲成人av高清在线-成人性生交大片免费在线-四虎成人精品在线观看| 我要去外滩路线怎么走-97在线看片免费视频-秋霞电影国产精品麻豆天美-亚洲天堂资源在线免费观看| 91国自产区一二三区-日韩高清不卡一区二区三区四区-免费欢看欧美黄色国产-成人无遮挡毛片免费看|