色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

During cutting, the front and back surfaces of the d?ng c? c?t frequently come into contact with chips and workpieces, resulting in severe friction. At the same time, there are high temperatures and pressures in the contact area. Therefore, wear will gradually occur on both the front and back surfaces of the cutting tool as cutting time extends. The specific types of wear failure include the following: (1) Front face crater wear, (2) Back face wear , (3) Boundary wear .

Study on Tool Wear?and Cutting Performance of?the?Coated Cemented Carbide Cutting Tools 2

The wear on the back face of the cutting tool has a more significant impact on machining accuracy and cutting force than the wear on the front face, and it is easier to control and measure. Therefore, the back face wear land width VB is usually used as the standard for tool bluntness. The wear process generally consists of three stages: the initial wear stage, the normal wear stage, and the severe wear stage. As shown in Figure 1, during the initial wear stage, due to the rough surface of the tool, the contact area between the cutting tool surface and the workpiece is small, resulting in higher compressive stress and faster wear, with a larger slope in the schematic curve. In the normal wear stage, after the initial wear, the tool surface has been smoothed, the contact area between the tool and the workpiece increases, and the pressure decreases, so the amount of wear increases slowly and relatively stably with the extension of cutting time. When the tool wears to a certain extent, the cutting force and cutting temperature increase rapidly, the wear accelerates drastically, and the cutting tool fails.

Tool Wear Mechanism

Tool wear is often the combined result of mechanical, thermal, and chemical actions. Generally, the following mechanisms are recognized for tool wear:

Abrasive Wear

This type of wear occurs due to the presence of hard particles between contact surfaces. The mechanism of abrasive wear mainly involves the continuous micro-cutting and scoring actions of the abrasive particles on the friction surface, resulting in the formation of grooves parallel to the direction of relative motion on the friction surface. The rate of abrasive wear is directly proportional to the normal load Fn and the wear coefficient K, and inversely proportional to the material hardness H. Generally, the higher the hardness of the cutting tool material, the better its resistance to abrasive wear.

Therefore, according to the theory of friction and wear, increasing the hardness and wear resistance of the cutting tool material, achieving an appropriate hardness/toughness ratio, and reducing the surface roughness of the cutting part of the cutting tool can all decrease the abrasive wear of the tool.

Study on Tool Wear?and Cutting Performance of?the?Coated Cemented Carbide Cutting Tools 3

Adhesive Wear

This type of wear is caused by the attraction between molecules and atoms on the contact surfaces. Under sufficient pressure and temperature, plastic deformation occurs, leading to a phenomenon known as cold welding, which is the result of the adhesive forces between the fresh surface atoms formed by the plastic deformation of the friction surfaces. An ideal adhesive friction surface is not necessarily the harder the better; it should have a surface characteristic that combines soft and hard features, as shown in Figure 2, with a soft surface (I), a hard subsurface (II), and a gentle transition zone (III) below. In other words, from the perspective of adhesive wear, the tool surface should have good lubricity, the subsurface layer should have high hardness to provide support, and the gentle transition zone below prevents the occurrence of layer-by-layer spalling of the cutting tool material.

Therefore, according to the theory of friction and wear, appropriately improving the hardness/toughness ratio can reduce the cutting force and cutting temperature, which is beneficial for reducing adhesive wear of the tool.

Diffusion Wear

Diffusion wear generally occurs during high-temperature machining processes. When cutting metal, the chemical elements of both the chip, workpiece, and tool diffuse into each other in the solid state during contact, altering the original material composition and structure, which makes the tool material become brittle and accelerates cutting tool wear. This type of wear caused by the migration of elements in the solid state is called diffusion wear. It is a type of wear characterized by chemical properties.

Oxidation Wear on Cutting tool

During the cutting process, due to the increase in cutting speed or the poor thermal conductivity of the work material, the temperature between the tool and the chip reaches high levels (700~1000℃). The tool material or the chip reacts with oxygen to form corresponding oxide films. This is also a type of wear characterized by chemical properties. Generally, during cutting, the cutting tool is in close contact with the chip and workpiece, where oxygen content is low, while in areas away from the contact zone, oxygen content is higher, leading to severe oxidation wear. During high-speed cutting, where cutting temperatures are high, oxidation wear is more likely to occur. The degree of oxidation wear is determined by the cutting speed, the amount of oxygen, and the oxidation resistance of the tool material. Therefore, selecting cutting tool materials with better high-temperature stability and a smaller wear coefficient, or using physical methods to reduce cutting temperatures, such as coolant, can reduce the occurrence of oxidation wear.

Study on Tool Wear?and Cutting Performance of?the?Coated Cemented Carbide Cutting Tools 4

Study on the Cutting Performance and Wear Mechanism of Coated Cemented Carbide Cutting Tools

Hard coatings have advantages such as high hardness, wear resistance, low friction coefficient, high resistance to high-temperature oxidation, and good chemical stability. They are widely used in tool machining. By applying surface coating technology to deposit a layer of high-performance coating on the tool substrate, the machining efficiency and cutting tool life can be improved. Under different machining conditions, coated tools exhibit different machining performances. In some cases, the cutting performance of coated cemented carbide tools may even be lower than that of uncoated cemented carbide tools. Therefore, by studying the cutting performance and wear mechanism of coated cemented carbide cutting tools, the modification mechanism of coated cemented carbide tools can be clarified, allowing for a reasonable selection of coating materials and structures, optimization of machining parameters and tool geometric parameters, and truly achieving the goals of high-quality, efficient, and low-cost machining.

Some scholars have studied the turning of 42CrMo4V steel with TiAlN coated cemented carbide inserts at different cutting speeds. The cutting speed significantly affects the failure mode of the tool. As the speed increases, the cutting force increases, and the stress on the coating increases, leading to earlier failure of the coating. Figure 3 shows the time at which failure occurs in the TiAlN coated cemented carbide insert at different cutting speeds. The coating failure process occurs because the stress on the coating exceeds the cohesive strength of the coating or the bonding force between the coating and the substrate, resulting in the formation of fragments. Subsequently, abrasive wear dominates the cutting tool failure process.

Nghiên c?u v? ?? mòn d?ng c? và hi?u su?t c?t c?a d?ng c? c?t cacbua xi m?ng ph? 5

d?ng c? c?t

We have studied the wear mechanism of TiC coated cemented carbide cutting tools under different cutting speeds. The wear process of the coated inserts can be divided into three stages: the initial wear stage, the normal wear stage, and the final wear stage, as shown in Figure 5. As the cutting speed increases and the cutting time extends, the main wear mechanisms are diffusion wear, plastic deformation wear, and plastic fatigue spalling wear. In the initial stage of wear, severe friction occurs between the tool and the chips on the front and back surfaces of the cutting tool, respectively, resulting in plastic slip of the surface coating material in the opposite direction of cutting tool feed. This leads to plastic fracture of the coating material on the front and back surfaces, which is plastic fatigue spalling wear, and the coatings on the front and back surfaces are worn through at points R and F as shown in Figure 4. In the normal wear stage, although the coatings at points R and F are worn through, the surrounding coatings play a supporting role, thus delaying the expansion of the worn-through areas on the front and back surfaces of the tool.

Tr? l?i

Email c?a b?n s? kh?ng ???c hi?n th? c?ng khai. Các tr??ng b?t bu?c ???c ?ánh d?u *

人妻中文字幕一区二区三区-国产精品丝袜久久亚洲不卡-久久伊人精品色婷婷国产-日韩中精品文字幕在线一区| 女优av天堂中文字幕-国产亚洲精品成人av久-国产黄三级三级三级三级一区二区-日本高清视频不卡一区二区| 亚洲一区二区三区日本久久-精品国产成人一区二区不卡在线-91精品国产色综合久久成人-一区二区三区成人在线观看| 国产精品高潮呻吟久久av嫩-青青草免费公开在线观看视频-亚洲欧美日韩另类综合视频-国产三级在线观看精品| 少妇特殊按摩高潮连连-国产成熟美女三级视频-亚洲男人天堂成人免费-国产粉嫩美女在线观看| 亚洲少妇视频免费观看高清-亚洲午夜福利在线播放-偷拍偷窥精品视频在线-黄色大片国产免费永久网站| 国产精品中文字幕在线一区-国产成人美女精品自在拍av-密桃av一区二区三区四区-女优免费中文字幕在线| 日韩人妻少妇手机看片-高清av有码中文字幕在线-禁止18勿入国产精品视频-中文字幕精品乱码亚洲一区| 久久超碰97中文字幕亚洲-亚洲成人精品在线一区二区-亚洲天天操夜夜操狠狠操-久久午夜鲁丝片午夜精品| 成人午夜伦理在线观看-国产一级做a爰片久久-亚洲精品av一区二区三区-国产色区一区二区三区| 国产一区二区精品在线播放-亚洲欧美精品伊人久久-亚洲精品日韩在线播放-国产精品色av一区二区三区| 日本中文字幕人妻在线视频-中文字幕亚洲中文字幕亚洲-欧美午夜福利天堂视频-日韩人妻中文字幕精品| 国内自拍精品视频在线-欧美黑人巨大一区二区三区-中文字幕日韩精品人妻-婷婷激情五月天中文字幕| 日本一区二区三区最新章节-香蕉av久久一区二区三区-久久久国产亚洲精品视频-国产伦精品一区二区三区精品视频| 免费蜜臀av一区二区三区人妻-亚洲熟女少妇精品久久-国产精品毛片免费观看-亚洲精品国产二区中文字幕| 亚洲三级免费在线播放-国产男女做a视频免费在线观看-六月婷婷缴情七月丁香-国产黄色片三级久久久| 亚洲情综合五月天中文字幕-日韩在线精品视频播放-日韩午夜午码高清福利片-99久久无色码中文字幕免费| 亚洲精品一区二区三区探花-av在线免费播放成人-精品亚洲一区二区三区在线播放-国产精品午夜福利亚洲综合网| 欧美av黄片在线观看-黄片国产一级片在线观看-国产精品黄色精品黄色大片-一区二区三区国产日本欧美| 国产传媒高清视频在线-日韩人妻少妇av在线-日本久久精品高清视频-丰满肥臀大屁股熟妇激情| 久久精品国产亚洲av麻豆甜-蜜桃亚洲精品一区二区三区-国产成a人亚洲精品无v码-午夜一区精品国产亚洲av| 婷婷激情五月天第四色-岛国片av在线免费观看-久久综合久久一区二区-91青青草原免费观看| 亚洲一区二区欧美日韩-亚洲精品四虎在线观看-国产夫妻在线视频播放-激情人妻中文字幕中字福利在线| 日本在线无乱码中文字幕-国产美女自拍视频精品一区-精品人妻中文字幕一区二区三区-精品国产一级二级三级| 日韩精品中文字幕免费人妻-欧美精品在线一区二区三区-女人张开腿让男人捅爽-99久久中出中文字幕| 九九热在线视频精品一-国产乱码精品一区二区蜜臀-乱妇乱熟女妇熟女网站视频-国产精品午夜视频在线| 日产中文字幕在线精品一区-日韩黄色特级片一区二区三区-8x8x精品国产自在现线拍-内射爆操视频在线观看| 中文在线字幕亚洲精品-91麻豆天美精东蜜桃专区-黄色av电影免费在线观看-国产三级四级在线播放| 国产在线观看不卡一区二区-国产女人在线观看视频射精91-91尤物在线视频观看-欧美无遮挡国产欧美另类| 国产色片地址网日本激情-国产自偷在线拍精品热不卡-国产精品自产拍蜜臀av在线-成人区人妻精品一区二区三区| 能看免费欧美一级黄片-男女视频网站免费精品播放-日本高清在线一区二区三区-熟女少妇免费视频网站观看| 日本高清成人一区二区三区-亚洲国产精品久久成人-91福利国产午夜亚洲精品-极品激情国产剧情av| 最好韩国日本免费高清-蜜桃视频一区二区三区在线观看-国产精品黄色大片在线看-日本高清视频亚洲不卡| 亚洲黄色美女视频大全-成上人色爱av综合网-亚洲一区二区三区激情在线观看-久久91精品国产一区二区| 日韩欧美国产亚洲中文-亚洲国产av第一福利网-亚洲欧洲日韩一区二区三区-91精品国产福利线观看久久| 日本精品视频免费在线-国产精品自在在线影院-日韩午夜一区二区三区-国产精品中文第一字幕| 日韩精品中文字幕免费人妻-欧美精品在线一区二区三区-女人张开腿让男人捅爽-99久久中出中文字幕| 女同在线播放中文字幕-国产成人亚洲精品在线看-日韩有码在线观看视频-蜜桃av噜噜一区二区三区视频| 亚洲国产日韩欧美性生活-开心激情五月婷婷丁香-久久精品国产亚洲av热片-国产日产精品视频一区二区三区| 绯色高清粉嫩国产精品-色偷偷亚洲偷自拍视频-国产性感午夜天堂av-**精品中文字幕一区二区三区| 四虎在线观看视频官网-国产免费一区二区不卡-色老99久久九九爱精品-巨乳人妻在线中文字幕|