色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

To achieve the sustainable development of tungsten resources in the carbide?tool industry, it is essential to develop high-grade carbide?tools that enhance tool performance, improve material utilization, recycle old tool materials, and continuously research new carbide?tool materials, while also promoting the use of other tool materials.

Carbide Tools' Sustainable Development of Tungsten Resources 2

Development of High-Grade Carbide?Tools

China has become the world’s manufacturing center and the largest market for cutting tools. During the 11th Five-Year Plan, domestic tools accounted for over 65% of the market share, but these products primarily fall in the mid to low-end categories, necessitating significant imports of high-grade tools. In 2010, China’s tool consumption was about 33 billion yuan, with approximately 11 billion yuan spent on imported high-grade tools, while domestically developed high-grade tools accounted for only about 1 billion yuan in sales. This situation results in a significant consumption of tungsten resources with low added value.

Developing high-grade carbide?tools is crucial for reducing tungsten resource consumption and promoting sustainable development. For example, indexable CNC blades not only inherit the features of high-end solid carbide?tools but also showcase integration in design and manufacturing, excellent chip-breaking designs, and diverse coating options. Compared to solid carbides, indexable blades significantly increase material utilization; for instance, Seco’s DOUBLE OCTOMILL? has 16 cutting edges, while Iscar’s H400 olive-shaped blade can be used over 10 times.

Improving the Utilization of Carbide?Tool Materials

Cutting tools often show minimal wear when they reach normal wear standards; directly classifying these tools as waste leads to significant tungsten resource wastage. Advanced regrinding and recoating technologies can remanufacture such tools, allowing them to maintain cutting performance multiple times and thus improving the utilization of carbide?tool materials.

Regrinding of carbide?tools involves classifying regrindable tools based on the extent of edge damage, determining suitable regrinding plans, and completing the process through rough grinding, fine grinding, and edge reinforcement. After rough and fine grinding, the cutting edge may have defects like micro-chipping and micro-cracking. Appropriate edge reinforcement methods can eliminate these defects, increasing edge strength and tool lifespan. Regrinded tools can also be coated again as needed.

Due to the standardized and modular nature of indexable blades, the regrinding process can also be standardized. Table 1 outlines the main regrinding processes and characteristics for indexable blades. After proper regrinding and recoating, the cutting performance of carbide?tools during rough machining is about 50% to 80% of new tools, while during finishing, it is about 85% to 90%. Through advanced regrinding and recoating technologies, carbide?tools can repeatedly demonstrate their cutting performance, thus enhancing material utilization and reducing tungsten resource consumption.

Table 1: Main Regrinding Processes and Characteristics of Indexable Inserts

Regrinding Process Name

Regrinded Blade Type

Principle

?u ?i?m Disadvantages
Local Regrinding Same Model Blades Observe worn areas of old blades for local regrinding Simple method, low cost Cannot completely eliminate original damage and wear marks
Small Specification Regrinding Similar Small Specification Blades Regrind old blades partially or completely, reduce size, convert to similar small specification blades Remains standard size after regrinding, can be installed on standard tool holders, effectively eliminates original wear and damage marks Large amount of regrinding required
Modified Regrinding Modified Blades Regrind blades partially or completely, change the shape and size for other purposes Relatively simple process, low cost Cannot completely eliminate original damage and wear, lower lifespan
Fixed Position Regrinding Grind specific areas of old blades into one or more shapes to improve cutting edges Fixed positioning, high interchangeability, provides specific shapes and sharp cutting edges Proprietary design

Recycling and Utilization of Carbide?Tool Materials

Tungsten resources in tungsten ore are primary, non-renewable resources, while tungsten resources in carbide?tool materials are secondary, renewable resources. As the supply of tungsten resources becomes increasingly tight, awareness of recycling tungsten resources from old carbide?tools is growing. Currently, the main methods for recycling tungsten resources from carbide?tool materials include melting, mechanical crushing, and electrolytic methods, with melting methods encompassing both niter and zinc melting methods. Zinc melting and electrolytic methods are currently the most widely used. Table 2 outlines the main methods and characteristics for recycling tungsten resources in carbide?materials. Additionally, other methods for recycling tungsten resources in carbides include high-temperature treatment and acid leaching.

Table 2: Main Methods and Characteristics of Tungsten Resource Recovery in Hard Alloy Materials

Method Name Recovery Principle ?u ?i?m Disadvantages
Niter Method Melt waste materials and niter at 900–1200°C, then immerse in water; tungsten enters solution as Na?WO?, then WO? or APT is produced from the solution; cobalt remains in the residue for recovery Early application, wide adaptability, low investment, fast reaction Long process, low recovery rate, high cost, environmental pollution
Zinc Melting Method At high temperatures, zinc forms a zinc-cobalt alloy with cobalt in carbides, causing the phase to expand; zinc is removed by vacuum distillation, resulting in a porous body, which is then crushed and milled to obtain tungsten-cobalt mixed powder Widely used, relatively mature, short process, tungsten recovery rate reaches 95% Product performance is low, high production costs and energy consumption
Mechanical Crushing Method Clean the surface of carbide?waste, then mechanically crush and mill to obtain a carbide?mixture Short process, low cost, high efficiency, low energy consumption Requires special equipment and technology
Electrolytic Method Use waste carbide?as the anode; by controlling the anode potential, cobalt is selectively dissolved into the electrolyte, then treated chemically to produce cobalt oxide; tungsten carbide is produced as anode sludge, which can be deoxidized to obtain tungsten carbide powder Simple process, low cost, high efficiency, low labor intensity, minimal pollution Generally suitable for waste with cobalt content greater than 8%

 

Foreign tool companies have long conducted research and application work on the recycling of worn carbide?tool materials. Sandvik Tooling has launched a recycling initiative aimed at recovering and reusing worn carbide?blades and solid carbide?tools. Reports indicate that approximately one-third of Sandvik’s carbide?products come from recycled materials each year. Similarly, Hitachi Tools in Japan is actively promoting the recycling of worn carbide?materials nationwide.

As a major consumer of carbide?tools, China has the potential to create favorable conditions for the recycling of tungsten resources. While many domestic companies, such as Heyuan Fuma carbide?Co., Ltd. and Xiamen Jinlu Special Alloy Co., Ltd., have begun recycling carbide?tool materials, overall awareness of tungsten resource recycling remains low, with a relatively low recycling rate and the quality of recycled tungsten resources needing further improvement.

carbide tool

Research and Development of New Carbide?Tool MaterialS

With the continuous emergence of new processing materials and technologies, new tool materials are also being developed. The research of carbide?tool materials with lower tungsten content plays a positive role in the conservation and sustainable development of tungsten resources. Currently, steel-bonded carbide?materials and functionally graded carbide?materials are two major research hotspots.

Steel-bonded carbide?is a new type of carbide?material developed in recent years. It consists of one or more carbides (such as TiC, WC) as the hard phase (about 30% to 50% content) and high-speed steel or alloy steel as the bonding phase, made through powder metallurgy. Steel-bonded carbides inherit the advantages of both carbides and steel, offering high hardness and wear resistance while also providing high strength, ductility, and weldability typical of steel. This material fills the gap between the two. Steel-bonded carbides can be used to manufacture complex tools like drill bits, milling cutters, pull tools, and hob cutters, showing significant effects in machining stainless steel, heat-resistant steel, and non-ferrous alloys.

Functionally graded carbide?materials are also a hot research topic globally and represent the future direction of modern carbides. These materials exhibit a systematic and uneven distribution of chemical composition across different sections, utilizing compositional gradients to endow different parts of the material with varying properties. This helps to resolve the inherent conflict between hardness and toughness in carbides, resulting in superior comprehensive performance.

The application of steel-bonded carbide?materials and functionally graded carbide?materials in tool fields has achieved remarkable results. For instance, the “Christmas tree” milling cutter used for machining turbine rotor grooves is made of steel-bonded carbide. Sandvik’s functionally graded carbide?materials have been widely used in products such as coating blades and mining alloys, which operate under very harsh conditions. Although China has researched steel-bonded carbide?and functionally graded carbide?materials for over a decade, breakthroughs in core technologies and equipment are still needed, making this a focus for future research.

Promotion of Other Tool MaterialS

Despite the strong versatility and broad applicability of carbide?tools, no universal tool exists; each type of tool material has its limitations. Promoting the use of other tool materials in their respective fields can reduce dependence on and excessive use of carbide?tools, contributing positively to the sustainable development of tungsten resources in the carbide?tool industry.

In addition to carbide?materials, other tool materials include high-speed steel, ceramic tools, and superhard materials. High-speed steel, especially high-performance powder metallurgy high-speed steel, remains important in complex forming tools; ceramic tools excel in machining cast iron and hardened steel; diamond PCD tools show clear advantages in processing non-ferrous metals and non-metallic materials; PCBN tools are primarily used for machining steel and cast iron materials.

Foreign tool application companies are far ahead of China in the use of other tool materials. For example, GE in the U.S. has achieved milling speeds of 4000 m/min when using PCD face mills on aluminum engine cylinder heads.? In recent years, the development of foreign ceramic tools has been particularly rapid; Sandvik has achieved significant success with whisker and alumina ceramic tools in high-feed turning and milling of high-temperature alloys.

S? k?t lu?n

China’s tungsten resource supply is becoming increasingly scarce. To reduce tungsten resource consumption and ensure sustainable development in the carbide?tool industry, it is essential to actively develop high-grade carbide?tools, enhance tool performance, improve material utilization rates, recycle worn carbide?tool materials, and continuously research new carbide?tool materials. Additionally, there should be strong promotion of the use of other tool materials in relevant application fields.

Tr? l?i

Email c?a b?n s? kh?ng ???c hi?n th? c?ng khai. Các tr??ng b?t bu?c ???c ?ánh d?u *

国产黄片一区二区在线-国产精品99国产精品久久-国产,欧美视频免费看-长腿丝袜国产在线观看| 日韩欧美亚洲国产首页-色婷婷色久悠悠综合在线-亚色综合久久国产精品-日本岛国免费在线播放| 亚洲熟妇av熟妇在线-国产精品午夜福利清纯露脸-粉嫩av在线播放一绯色-日产精品久久久久久蜜臀| 欧美亚洲午夜精品福利-青草在线视频免费观看-亚洲国产精品久久又爽av-久久少妇呻吟视频久久久| 四虎在线观看永久免费-久久精品熟女亚洲av香蕉-av国内精品久久久久影院三级-亚洲国产一区二区三区av| 精品人妻中文字幕有码在线-亚洲欧美一区二区成人精品久久久-亚洲第一人伊狼人久久-亚洲国产欧美精品在线观看| 日韩av观看一区二区三区四区-美丽的蜜桃3在线观看-久久人妻少妇嫩草av-欧美亚洲另类久久久精品| 国产福利一区二区写真-久久国产电影在线观看-亚洲国产一区二区三区亚瑟-中文字幕乱码亚洲无线码二区| 一本久道视频无线视频试看-亚洲国产精品一区二区三区久久-中文字幕色偷偷人妻久久-久久精品99国产精品中| 尤物视频在线观看网址-欧美午夜精品久久福利-久久这里只有精品视频5-国产精品成人综合色区| 久久噜噜噜精品国产亚洲综合-91精品国产高清久久福利-精品国产一区二区三区麻豆-日本加勒比一区二区在线观看免费| 久99久热这里只有精品-日韩av一区二区三区播放-天堂日韩av在线播放-中文字幕被侵犯的人妻| 亚洲天堂男人的天堂在线-亚洲激情欧美日韩在线-国产av剧情精品老熟女-色老头与人妻中文字幕视频| 中文字幕久久精品一区二区三区-99国产麻豆精品人人爱-91麻豆精品福利视频-国产精品亚洲一区中文字幕| 亚洲国产日韩精品欧美银杏-99久久免费热在线精品-国产精品免费不卡av-国产精品老熟女视频一区二区| 伊人久久大香线蕉综合av-久久久中文字幕人妻精品一区二区-青草在线免费观看视频-国产清纯白嫩美女蜜臀av| 加勒比大香蕉优优久久-国产av精品国语对白国产-亚洲一区二区免费日韩-国产一级内射无挡观看| 成年人午夜黄片视频资源-少妇高潮喷水在线观看-色网最新地址在线观看-人人爽人人澡人人人人妻那u还没| 国产精品蜜桃久久一区二区-久久精品熟女亚洲av麻豆蜜臀-日本一区二区精品色超碰-伊人一区二区三区久久精品| 青青草原精品在线观看-日本久久精品狼人狠狠操-欧美深夜福利视频网站-麻豆密入视频在线观看| 欧洲人妻中文字幕在线-白白色永久免费视频播放-精品日韩免费在线视频-风间由美性色一区二区三区| 亚洲欧美成人影院网址-在线观看视频一区二区三区三州-成人自拍视频免费在线-国产精品蜜臀视频视频| 国产一区二区在线中文字幕-欧洲中文字幕国产精品-国产精品蜜臀av免费观看四虎-国产一级特黄99久久| 午夜亚洲国产色av天堂-色天天综合色天天久久191-国产精品久色婷婷不卡-日韩欧美中文字幕在线韩| 日韩毛片精品一区二区-无套内谢少妇高潮毛片些-国产精品午夜激情视频-亚洲天码一区二区三区| 悠悠成人资源亚洲一区二区-国产成人综合亚洲国产-青青草在线公开免费视频-91精品日本在线视频| 国产性色av综合亚洲不卡-中文字幕一区二区在线资源-久久四十路五十路六十路-91九色在线观看免费| 亚洲一级特黄大片做受-国产91喷潮在线观看-日本不卡一区二区三区四区-在线观看高清视频一区二区三区| 人妻体内射精一区二区三区小视频-国产精品久久久久人人爽-日韩三级黄色一区二区三区-亚洲伊人色综合网收藏| 国产高清三级自拍视频-最近日本免费播放视频午夜-日本女优一级片中文字幕-在线播放深夜精品三级| 亚洲a级一区二区三区-人妻中文字幕精品在线-日韩精品中文字幕人妻系列-香蕉久久最新精品视频| 人妻少妇中出中文字幕-久久国内精品一国内精品-中文字幕av一区二区三区蜜桃-日韩一区二区三区精品视频在线观看| 精品国产成人一区二区99-午夜爱爱视频最新深夜-午夜福利片中文字幕在线观看-成人性生交大片免费小优| 欧美精品一区二区三区香蕉-国产精品黄色免费网站-蜜桃av乱码人妻一二三区-国产综合亚洲一区激情国产| 久久亚洲av综合悠悠色-91手机精品免费在线播放-午夜福利一区二区三区在线播放-97在线精品观看视频| 久久久久亚洲av成人精品-久久精品成人一区二区-国产精品呻吟久久人妻无吗-国产欧洲日本一区二区| 中文字幕亚洲综合精品一区-久久好视频久久这里有精品-国产在线传媒高清视频-日韩精品一区二区亚洲av失禁| 亚洲老妈激情一区二区三区-夜晚福利视频亚洲精品自拍视频-亚洲av永久精品一区二区在线-中文国产人精品久久蜜桃| 国产精品国产三级国产专区55-伊人久久大香线蕉亚洲-av男人的天堂在线观看-国产女主播在线一区二区三区| 蜜臀av午夜精品福利-日韩精品av在线一区二区-丰满熟女人妻一区二区三区-懂色日韩欧美国产亚洲| 日韩一区二区三区视频在线观看-久久精品亚洲热综合一本色婷婷-国产亚洲精品视频一区二区三区-人妻中文字幕精品系列|