色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

To reduce tool Build-Up and minimize the cost of tool wear during mass production, a combined theoretical and practical analysis approach is employed. This approach comprehensively examines the processing conditions, including processing efficiency, cooling methods, and material properties. It aims to address the issue of aluminum adhesion caused by aluminum melting, allowing for tool reuse and thus lowering tool consumption costs.

With the rapid development of China’s automotive industry, especially in the booming new energy vehicle sector, lightweighting has become a core topic. The key to lightweighting is changing traditional materials. Aluminum alloys, with their high strength and low weight, are essential for achieving vehicle lightweighting. The complex geometric shapes of automotive parts and the increasing proportion of die-cast aluminum alloy parts in vehicles have led to a growing demand for CNC machining of die-cast parts.

CNC machining of aluminum alloy automotive parts requires high efficiency, stable continuous production, and decreasing costs, necessitating more detailed control and planning of the entire production process.

How to Treat Tool Build-Up in Aluminum Alloy Cutting Processes Using Chemical Methods? 1

Tool Build-Up

Aluminum’s inherent property of low melting point causes it to become “sticky” during cutting. Due to this characteristic and inadequate cooling in actual conditions, the heat generated by friction during the microscopic cutting process cannot be released in time or effectively. This results in aluminum melting and adhering to the tool’s cutting edges and chip flutes. Upon cooling, the aluminum solidifies and sticks to the tool, forming build-up. This phenomenon, commonly referred to in the industry as “easy tool sticking,” leads to tool failure.

Tools are consumables in CNC machining processes and represent a significant cost component. Generally, cutting tools for aluminum alloys need to be sharper, with chip flutes specially polished and coated with aluminum-specific coatings to improve chip removal efficiency. The automotive industry’s push for high efficiency increases feed rates and cutting speeds, which raises the heat generated during cutting and the risk of aluminum melting and sticking to the tool, thereby increasing costs due to tool failure from build-up.

With environmental regulations, minimal quantity lubrication (MQL) is widely used as a cutting fluid alternative in aluminum alloy CNC machining. However, the low melting point of aluminum exacerbates the reduced cooling effect of MQL, further promoting build-up. Tools that fail due to sticking account for about 40% of conventional tool failures. Traditional methods of dealing with build-up, such as tapping or striking, rarely restore tools for reuse. Thus, a new solution is proposed.

Treatment Measures

The new solution involves the following steps:

  1. Remove the tool with build-up.
  2. Obtain solid NaOH, dilute it with water, and place it in a ceramic container.
  3. Once diluted into NaOH solution, immerse the tool with aluminum build-up in the solution. Ensure that the build-up areas are fully submerged and maintain immersion for 2 hours, or adjust based on practical conditions. Table 1 compares traditional and new treatment methods.
Traditional Treatment New Solution
Tools with aluminum build-up are discarded directly, leading to significant production costs Immersion liquid can remove aluminum from complex and irregular shapes
Physical methods like tapping and striking damage the polished surface, leading to tool discard or reduced cutting efficiency Short treatment time and simple operation
Short treatment time and simple operation Easy-to-obtain treatment materials with low cost

 Build-Up

Chemical Principles

Using A1Si7Mg material commonly found in automotive parts as an example, where A1 content is approximately 93.5%, Si content is 6.5%, and Mg content is 0.25%. Both Al and Si react with NaOH solution. Immersion in NaOH solution removes the primary A1 component from the tool. The principle involves the reaction between metal and NaOH, producing bubbles (H?), which eventually causes the adhered aluminum to detach.

Chemical reaction equations are as follows:

  1. Si reacts with NaOH: Si + 2NaOH + H?O → Na?SiO? + 2H?↑
  2. Al reacts with NaOH: 2Al + 2NaOH + 2H?O → 2NaAlO? + 3H?↑

The final result is the removal of aluminum, making the tool reusable.

Experimental Validation for Reducing Build-up

The theoretical method was tested using a tap. Taps are valuable tools in aluminum alloy machining, requiring a longer lifespan and featuring complex geometric shapes. Once aluminum adhesion occurs, physical removal is nearly impossible, making this test more significant and representative.

Due to high heat generated during machining and possible inadequate cooling, aluminum melts instantly and adheres to the flutes rendering the tap unusable due to damaged threads.

The test involved immersing the tap with aluminum build-up in NaOH solution.

The test conclusion: The tap, after complete immersion in NaOH, showed that the build-up had completely detached. Residual aluminum slag was found in the test container. The treated tap was used for further machining, and the workpiece threads met the required specifications. The tap was successfully restored for reuse.

How to Treat Tool Build-Up in Aluminum Alloy Cutting Processes Using Chemical Methods? 2

S? k?t lu?n

The automotive parts industry, characterized by mass production, requires extensive cutting validation during the initial equipment and tool design phase. Common issues such as build-up during validation due to parameter mismatches, equipment adjustments, and operator experience can significantly increase trial costs and production cycles. This method effectively addresses build-up issues, greatly reducing tool costs and processing time, extending tool life, and substantially lowering production costs.

Tháng Chín 4, 2024

Perfect

Tr? l?i

Email c?a b?n s? kh?ng ???c hi?n th? c?ng khai. Các tr??ng b?t bu?c ???c ?ánh d?u *

射女人进去视频在线观看-91麻豆国产在线视频-久久国产精品99精品国产不卡-中文字幕欧美日韩国产| 国产在线一区二区三区视频-国产一区二区三区成人18禁-国产精品自偷一区在线观看-熟女人妻片濑仁美在线| 欧洲熟女乱色一区二区三区-人妻中文字幕一区二区在线视频-亚洲码欧洲码一区二区三区四区-日本片在线美女视频骚货| 国产特黄特色特级黄大真人片-综合激情五月三开心五月-欧美日韩不卡视频合集-成熟的妇人亚洲性视频| 亚洲欧美日韩不卡视频-四虎永久在线精品免费看-久久av丰满熟妇极品-亚洲国产精品中文字幕一区| 国产精品 一区二区 久久-国产在线一区二区三区四区视频-午夜日本在线观看视频-日韩一区二区中文字幕18禁| 在线播放中文字幕国产精品-亚洲av成人免费在线观看-国产男女激情视频免费观看-亚洲av黄片一区二区三区| 99精品一区二区成人精品-激情自拍视频在线观看-久久热这里只有精品视频-伊人色综合九久久天天蜜桃| 成人精品av一区二区三区-日本久久精品在线视频-亚洲精品自拍资源在线播放-青青草原在线视频资源| 久久伊人蜜桃av一区二区-交换享用人妻在线观看-中文字幕国产精品综合-亚洲久悠悠色在线播放| 水蜜桃精品视频在线观看-日本国产一区二区在线观看-69久久夜色国产精品69-免费观看亚洲成人av| 欧美日韩你懂的在线观看-国产欧美日韩亚洲一区二区-国产无遮挡裸体免费久久-亚洲国内精品久久久久久| 国产偷拍自拍视频在线观看-丰满欧美熟妇视频在线-亚洲午夜激情在线观看-四虎视频精品免费观看| 免费亚洲毛片在线播放-国产精品国产三级国产专区不卡-亚洲欧美日韩狂野精品-白嫩丰满人妻荫蒂毛茸茸| 国产精品毛片一区二区三-av蜜臀永久免费看片-三级国产美女搭讪视频-亚洲中文字幕在线观看一区二区| 久热这里只有精品视频66-国产资源精品中文字幕-亚洲免费视频一区二区三区四区-亚洲国产特一特二区精品分布| 日本激情内射亚洲精品-国产亚洲一区二区三区午夜-国产精品人妻熟女av在线-亚洲av综合亚洲精品| 精品亚洲无线一区人人爽人人澡人人妻-国产欧美一区二区综合日本-亚洲天堂中文字幕君一二三四-九九热视频这里有精品| 国产喷白浆一区二区三区网站-中文字幕人妻系列av-国产极品尤物自拍露脸-自拍偷区亚洲综合激情| 精品国产人成亚洲区中文久久-欧美日韩夫妻性生活视频-亚洲欧美日韩高清专区一-国产精品无套内射后插| 精品国产成人亚洲午夜福利-午夜福利一区二区91-亚洲中文字幕女优最新网址-亚洲av成人国产精品| 国产亚洲精品精品国产亚洲综合l-99久久精品午夜一区二-青青草青娱乐免费在线视频-日本久久中文字幕一二三| 精品人妻一区二区三区久久91-久久精品亚洲国产av搬运工-日本熟女人妻一区二区三区-亚洲国产精品高清线久久| 欧美精品日韩精品在线-久热传媒在线免费观看视频-亚洲一级天堂作爱av-久久精品国产精品亚洲蜜月| 欧美精品香蕉视频在线观看-国产成人久久精品一区二区三区-亚洲国产日本在线观看-五月婷婷丁香综合在线观看| 正在播放会所女技师口爆-久热久热精品在线视频-久久久精品蜜桃久久九-亚洲精品无吗无卡在线播放| 天堂av日韩在线播放-中文字幕久久精品亚洲-国产精品沟厕在线播放-在线观看亚洲精品在线av| 日韩人妻一区二区三区免费-日韩午夜精品中文字幕-国产三级精品大乳人妇-一级女性全黄久久生活片免费| 亚洲中文字幕高清乱码毛片-国产成人午夜福利精品-久久毛片绝黄免费观看-国产亚洲成性色av人片在线观| 国产av一区二区三区在线-亚洲国产欧洲在线观看-跪求能看的国产熟女av网-国内色精品视频在线网址| 成人一区二区三区激情视频-久久一区二区免费蜜桃-钢琴考级三级咏叹调视频-亚洲性感毛片在线视频| 少妇高潮大片免费观看-九九热精品在线视频观看-中文字幕有码久久高清-免费国产一级一片内射中出| 一本大道加勒比东京热-国产一二三区亚洲精品美女-国产在线麻豆在拍91精品-久久久久成人亚洲国产| 中文字幕在线永在少妇-97免费公开在线视频-国产三级自拍视频在线播放-黄色aaa三级三级三级| 亚洲av男人的天堂久久精品-人妻中文字幕一区二区视频-国产男女乱淫真视频播放-国内人妻自拍交换在线视频| 免费亚洲毛片在线播放-国产精品国产三级国产专区不卡-亚洲欧美日韩狂野精品-白嫩丰满人妻荫蒂毛茸茸| 青草青青视频精品在线-久热这里只有精品视频免费-免费av一级国产精品-尤物视频网站在线播放| 五月激情综合网俺也去-美欧日韩一区二区三区视频-午夜看片福利在线观看-色老板在线免费观看视频日麻批| 午夜激情小视频在线观看-日本福利视频免费观看-日本人妻久久精品欧美一区-国产成人自拍小视频在线| 国产精品97一区二区三区-四虎永久免费视频播放-久久五十路丰满熟女中出-国产18日韩亚洲欧美| 亚洲一级特黄大片做受-国产91喷潮在线观看-日本不卡一区二区三区四区-在线观看高清视频一区二区三区|