色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

When designing a lathe tool chip breaker, the first consideration should be the chip curling and breaking characteristics. These two elements will be discussed in detail below.

The direction of chip flow and the chip flow angle φλ

The direction of chip flow has a significant impact on chip curling and breaking, and the angle between the flow direction and the main cutting edge plane is called the chip flow angle φλ, as shown in Figure 1. In orthogonal free cutting, chips flow out in the vertical direction to the cutting edge, and the chip flow angle φλ is approximately 0. In oblique free cutting (such as with inclined wide-edge planing tools), the chip flow angle is approximately equal to the rake angle (φλ = λse). However, for general cutting, it is influenced not only by the primary cutting edge but also by the secondary cutting edge. In summary, the principle is that chips should flow out in the direction that minimizes energy consumption. If the direction of the chip breaker groove does not align with the chip flow direction, it can affect its chip-breaking effectiveness.

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 2

Figure 1 The effect of the chip flow angle (φλ) on chip curling

Chip curling

During the chip flow process, chips curl, and the direction and curling of the chips determine their shape. When chips only curl upward along the thickness direction of the chip, the curling axis of the chip is parallel to the chip’s bottom surface, and the angle between them is θ = 0°. Different chip shapes are formed with different chip flow angles φλ.

As shown in Figure 1, when φλ = 0°, and the chips do not have lateral flow, it results in flat spiral chips (coil-like chips). When φλ ≠ 0°, the chips curl upward and also move along their curling axis, creating a helical motion of the chips. When φλ is relatively large, if the distance the chip moves while making one revolution is greater than or equal to the nominal cutting layer width, it forms tubular spiral chips. If φλ is relatively small, and the chip moves a smaller distance along the curling axis, it is more likely to form conical spiral chips (tower-shaped chips).

When the chips only have lateral (sideways) curling and no upward curling, the curling axis of the chips is perpendicular to the chip’s bottom surface (θ = 90°), forming washer-like ring-shaped spiral chips.

When the chips curl both upward and sideways, and the chip flow angle φλ is not zero, it can create ring-shaped or conical spiral chips, depending on the values of various parameters. The curvature radius rDX of the chips curling upward is related to the parameters of the chip breaker groove. Taking a straight-line circular arc chip breaker groove as an example, when the chip’s bottom surface contacts the shoulder of the chip breaker groove, as shown in Figure 2. The average curvature radius rDX at which the chips curl within the chip breaker groove can be calculated based on geometric relationships:

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 3

In the formula,

Wn – Width of the chip breaker groove (mm);

hn – Depth of the chip breaker groove (mm);

hDX – Thickness of the chip (mm);

lf – Length of chip in contact with the previous surface, when cutting steel, lf ≈ hDX (mm).

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 4

Figure 2 The influence of the chip groove on chip curling

 

Chip Groove Shapes and Parameters

Chip Groove Shape

The chip breaker groove of a welding lathe tool is ground when sharpening the tool, while for indexable lathe tools, it is directly pressed and formed during the production of the blade.

Classification of Chip Groove Shapes Based on the Section

Linear-circular chip breaker groove: This type of cross-section consists of both straight and general arcs. The front part of the lathe tool is formed by a plane section close to the cutting edge, and the basic parameters of the chip breaker groove are as follows: width Wn = 10.7)Wn, wedge angle βo ≤ 40, negative rake width bn ≤ fo. Rn and Wn are the main factors affecting chip formation, where the size of Rn directly influences the curvature radius of the chip.

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 5

Figure 3 – Basic Section of Chip Groove

Polygonal chip breaker groove: It is formed by the intersection of two straight sections. The groove bottom angle θ replaces the role of the above-mentioned arc radius Rn. When a small value is chosen, the chip curvature radius is small. If θ is too small, it can cause the chip to block in the groove, leading to chip packing. If θ is too large, it can increase the chip curvature radius and make it less likely to break. The groove angle is generally recommended to be between 110° and 120°.

Full arc-shaped chip breaker groove: Under the same conditions of front angle and groove width, a full arc-shaped chip breaker groove has higher cutting edge strength. Therefore, it is suitable for a larger front angle and heavy-duty lathe tools. The following approximate relationship exists between the groove width Wn, arc radius Rn, and front angle γo:

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 6

Classification According to Chip Groove Inclination Angle

The inclination angle of the chip breaker groove shape is the angle at which the chip breaker groove is inclined relative to the main cutting edge. There are three forms, as shown in Figure 4.

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 7

Figure 4 – Common Chip Groove Inclination Angles

A-shape: This groove shape features an open semi-groove with equal width and depth in the front and rear, known as parallel-style. This groove shape can achieve good chip-breaking effects over a wide range of feed variations. However, for tool inserts with a certain groove width, their chip-breaking range is relatively narrow, and the groove width should be determined based on the feed rate.

Y-shape: Its characteristic is an open semi-groove with a wider front and narrower rear, also known as outer inclined style. In this groove shape, point A has a high cutting speed, a narrow groove width, and shallow groove depth. Chips tend to curl at this point, with a small curling radius. At point B, the chip curling is slow, the groove is deep, and the groove bottom forms a negative rake angle, making it easier for the chips to contact the workpiece surface and form arc-shaped chips. This groove shape is suitable for moderate back feed rates (ap) where chip breaking is stable and reliable. However, when ap is large, the significant difference in curling radius between points A and B can lead to chip clogging.

K-shape: This groove shape is characterized by a narrow front and wider rear open semi-groove, also known as inner inclined style. Unlike the Y-shape, point B in this groove has a narrower width and smaller depth, and the groove bottom has a positive rake angle, causing chips to easily depart from the workpiece and form tubular or ring-shaped spiral chips. Its chip-breaking range is relatively narrow and is mainly suitable for situations with low cutting volumes, finishing, semi-finishing, and guiding chip flow out of holes during hole machining.

The choice of chip groove parameters

(1)When cutting medium carbon steel with moderate back feed rates and feed rates (ap = 10.6mm/r) using cemented carbide turning tools, to achieve a C-shaped chip formation, it is recommended to use a straight circular arc-shaped chip breaker groove.

For small back feed rates (ap < 1mm), the recommended chip breaker groove mentioned above may not easily break the chips. Due to the width of the chip breaker groove, the chips, under the action of the tool tip arc and secondary cutting edge, may divert towards the primary cutting edge near the tool tip without passing through the groove bottom, thus not achieving additional curling deformation. As shown in Figure 5, you can use a D-shaped chip breaker groove, ground at a 45° incline, or choose a straight circular arc-shaped A-shaped chip breaker groove. When f = 0.1mm/r, you can take Wn = 3f, hn = f, Rn = f/2.

For large back feed rates and feed rates (ap > 10mm, f = 0.6~1.2mm/r), due to the wide and thick chips, forming a C-shaped chip can easily damage the cutting edge and cause splattering of chips, which can be dangerous. Typically, a full circular arc-shaped chip breaker groove with an increased radius Rn and reduced groove depth is used.

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 8

Fig.5 45-degree angled groove with small depth of cut and its chip range

Due to the significant deformation of low carbon steel chips, the chip thickness hDX is thicker than that of medium carbon steel under the same conditions, making it easier to break chips. Cutting practice has shown that, using the same chip breaker groove parameters, the chip range for low carbon steel is wider than that of medium carbon steel. Therefore, when cutting low carbon steel, the same chip breaker groove parameters as those for cutting medium carbon steel can be used.

(2)When cutting alloy steel such as 18CrMnTi, 38CrMoAl, 38CrSi, etc., it is generally recommended to use an external oblique chip breaker groove. The groove width Wn and arc radius Rn should be appropriately reduced to facilitate chip deformation due to the increased strength and toughness of alloy steel, making chip breaking more effective.

In metal cutting, there are often materials that are particularly difficult to chip, such as high-temperature alloys, high-strength steel, wear-resistant steel, stainless steel, and non-ferrous metals like pure copper, oxygen-free copper, and pure iron.

As shown in Figure 6, a double-edge chamfer angle can be used in combination with a typical external oblique chip breaker groove. The groove width Wn is typically set between 3.5 to 5mm, the external oblique angle τ is between 6° to 8°, the first edge chamfer angle λs1 is -3°, the second edge chamfer angle λs2 is between -20° to -25°, and the length Lλs2 is ap/3. The optimal cutting parameters are: ap=40.35mm/r, and vc=80~100m/min. This tool has excellent tip strength, a large chip curling radius, and typically produces conical spiral chips or short tube-like spiral chips. However, it generates 20% to 30% higher radial forces compared to single-edge chamfer angle tools and should not be used when the rigidity of the machining system is poor.

Làm th? nào ?? l?a ch?n ?úng cho d?ng c? ti?n hình d?ng b? phoi 9

Figure 6 double-edged angled cutting edge

Tr? l?i

Email c?a b?n s? kh?ng ???c hi?n th? c?ng khai. Các tr??ng b?t bu?c ???c ?ánh d?u *

成人福利一区二区视频在线-亚洲婷婷综合久久一本伊一区-日本高清午夜一区二区三区-日韩欧美黄色激情视频| 中文字幕在线永在少妇-97免费公开在线视频-国产三级自拍视频在线播放-黄色aaa三级三级三级| 亚洲手机在线视频亚洲毛-欧美91精品国产自产在线-国产一区二区中文字幕在线视频-国产av91在线播放| 国产三级一区二区三区视频在线-日韩av在线视频网站-99久国产精品午夜性色福利-精品国产女同一区二区三区| 国产精品一区成人精品果冻传媒-日韩精品一区二区三区不长视频-欧美日韩不卡在线视频-99久久热视频在线观看| 98人妻精品一区二区久久-五月婷婷六月丁香久久综合-国产精品手机在线免费观看-亚洲国产日韩欧美综合| 亚洲少妇熟女一区二区三区-熟女熟妇少妇妇女乱熟-一区二区三区不卡国产视频-成人精品一区二区三区综合| 一本久道热线在线视频-精品人妻在线中文字幕-亚洲av成人av天堂色多多-国产牛奶粉哪个品牌好| 中文字幕亚洲精品人妻-91九色免费视频网站-黄色av全部在线观看-四虎最新地址在线观看| 国产精品中文字幕久久-国产精品一区二区在线免费-韩国午夜三级一区二区-亚洲国产成人精品一区刚刚| 天天躁夜夜躁狠狠85麻豆-操美女逼视频免费软件-国产精品一区二区在线观看-一区二区三区免费观看视频在线| 国产在线精品一区二区中文-亚洲小说欧美另类激情-97碰久日韩视频在线观看-日本一道本高清不卡区| 99久久亚洲综合网精品-久久热福利视频在线观看-日韩av人妻中文字幕-日本一区二区三区视频在线播放| 很黄无遮挡在线免费网站-韩国精品一区福利视频在线播放-爱看色黄色大片儿网站-日韩综合一区二区三区在线观看| 日本在线观看一区二区免费-日本一区二区精品在线观看-老湿机午夜免费在线观看-成人在线永久免费观看| 乱中年女人伦中文字幕久久-国产成人高清免费视频网站-中文字幕亚洲人妻在线视频-中文字幕剧情av在线| 日韩97精品一区二区三区-九九日本黄色精品视频-一进一出流出白浆视频-国产亚洲精品不卡视频| 美女脱掉内裤露屁屁最新章节-成人中文字幕在线观看的-国产极品尤物粉嫩在线观看-在线视频一区二区中文字幕| 国产精品第五页在线观看-亚洲欧美日韩丝袜另类一区-国产懂色av一区二区三区-午夜亚洲欧美日韩在线| 少妇人妻上班偷人露脸-欧美中文字幕乱码视频-欧美韩日本一本交道免费-国产一区,二区,三区免费视频| 欧美日韩激情片在线观看-色男人天堂网在线观看-亚洲一级特黄大片免色-国产十八禁免费在线观看| 欧美亚洲午夜综合一区二区-亚洲大香蕉视频在线观看-国产综合激情人妻91麻豆-国产精品国产三级国产专不| 国产精品色哟哟在线观看-亚洲精品国产自在现线-国产成人精品免费播放视频不卡-国产精品高潮呻吟av久久黄| 亚洲av男人的天堂久久精品-人妻中文字幕一区二区视频-国产男女乱淫真视频播放-国内人妻自拍交换在线视频| 国产亚洲精品精品国产亚洲综合l-99久久精品午夜一区二-青青草青娱乐免费在线视频-日本久久中文字幕一二三| 国产一区二区三区在线播放-偷拍女厕尿尿在线免费看-午夜一区二区三区三区-国产精品一区二区三上人妻| 亚洲视频一区二区久久-亚洲欧美日韩精品中文乱码-亚洲尤物在线视频观看-欧美熟妇视频一区二区三区| 亚洲国产精品不卡毛片-青青青视频手机在线观看-在线视频中文字幕人妻-亚洲永久精品免费在线| 极品尤物高颜值女神露脸-免费视频一区二区三区美女-麻豆av国语对白麻豆-亚洲精品国产午夜精品| 麻豆视频传媒在线免费看-亚洲性码不卡视频在线-岛国av色片免费在线观看-久久久国产精品视频大全| 亚洲av成人精品爽爽-国产麻豆91在线播放-国产精品久久精品久久精品-蜜臀久久综合一本av| 亚洲天堂男人的天堂在线-亚洲激情欧美日韩在线-国产av剧情精品老熟女-色老头与人妻中文字幕视频| 亚洲乱码中文字幕小综合-欧美亚洲国产精品一区二区-中文字幕人妻系列人妻有码中文-一区二区三区在线观看的视频| 久久精品中文字幕一区二区-日本夫妻性生活视频播放-综合久久精品亚洲天堂-日韩中文字幕不卡久久| 麻豆国产av一区二区精品-久久福利社最新av高清精品-丝袜美腿亚洲综合伊人-亚洲欧洲av一区二区三区| 国产黑色丝袜在线观看网站-成人a免费大片在线看-熟妇人妻精品一区二区三区视频-日韩av高清不卡一区二区三区| 青青青视频蜜桃一区二区-粗大挺进人妻中文字幕-国产小视频在线看不卡-国产精品一区免费在线观看| 激情视频在线观看国产一区-日韩高清在线视频一区免费观看-国产白丝精品在线观看-色偷偷伊人大杳蕉综合网| 国产精品国产三级国产专区55-伊人久久大香线蕉亚洲-av男人的天堂在线观看-国产女主播在线一区二区三区| 午夜福利网午夜福利网-国产粉嫩学生在线观看-亚洲精品成人高清在线观看-亚洲人成人日韩中文字幕| 91亚洲精品免费在线观看-加勒比国产精品综合久久-91九色精品丝袜久久人妻-正常人的性生活一个月几次|