色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

 

The article introduces a new method called “amorphous crystallization + reactive transformation” for preparing dense and uniformly structured nano carbides. The formation and evolution process of nanocrystalline multiphase structures are systematically studied. A series of heating and quenching experiments are designed to investigate the nanocrystalline nucleation and initial phase transformation of multicomponent amorphous powders. The parallel processes of grain growth and interface formation are explored, revealing their micro-mechanisms.

Furthermore, the study examines the influence of nanoscale structures and interface characteristics on the mechanical properties of the prepared nanocrystalline composite materials. It emphasizes the significant role and underlying mechanisms of interface coherency in refining the microstructure of carbides during the loading process. The insights provided by this research offer a new perspective on achieving high overall mechanical performance in nanocrystalline composite materials through the utilization of specific interface relationships.

 

Research Objective

carbide materials are generally hard and brittle, with very limited plasticity, primarily due to the intrinsic properties of the covalent bonds in the matrix ceramic phase. Due to the inherent characteristics of covalent crystals, strengthening strategies commonly used in metallic materials such as solid solution strengthening, dislocation (deformation) strengthening, and precipitation strengthening are difficult to apply to ceramics and ceramic-based composites. Fine-grain strengthening is often employed to enhance the strength of ceramic materials. However, as grain size decreases, especially when it reaches the nanometer scale, the hardness of ceramic grains increases, but the toughness decreases significantly. Therefore, finding an optimal balance between the hardness and toughness of ceramic materials has always been a challenging problem in the field.

WC-Co carbide is a typical representative of ceramic/metal composites. In ultrafine and nano carbides, as the grain size decreases, the volume fraction of interfaces increases rapidly. Hence, interface characteristics play an increasingly important role in the mechanical behavior of composite materials with refined grain structures. In nano carbide composites, refining ceramic grain size and modulating interface bonding characteristics can effectively improve their overall mechanical performance.

 

Research Methods

The Co-W-C amorphous powder mixture prepared using amorphous Co2W4C composite powder and carbon black first forms the Co3W3C phase as the temperature rises. Subsequently, the WC phase is formed, and finally, the Co phase is formed. Through the study of the growth process after the crystallization of WC, the formation and growth mechanism of the hard phase originating from the amorphous matrix in the WC-Co composite material are revealed.

In the initial stage of WC nucleation, WC crystals exhibit regular shapes on the observation plane and have equidistant edges along the [100] and [0001] directions. (0001) basal planes and (100) prism planes grow alternately through a “step” mechanism, where the step thickness is approximately 1 to 2 atomic layers. The growth of WC crystals along the [0001] and [100] directions is essentially isotropic, resulting in the formation of equiaxed (110) crystal faces.

 

Research Results

In the “amorphous crystallization + reactive transformation” new method described in this article, the WC and Co phases are formed through the crystallization and carbide process of the amorphous matrix. During this process, coherent or semi-coherent WC/Co phase boundaries (PB) are formed in the nanocrystalline WC-Co composite material. As the WC grains grow, S2 WC/WC grain boundaries (GB) may form between nanocrystalline grains. Simultaneously, PB and GB serve as diffusion and migration channels for atoms, promoting grain growth and phase evolution. Therefore, compared to traditional carbides prepared by sintering a mixture of WC and Co powders, the nano carbide fabricated using this method exhibits a significantly increased proportion of coherent interfaces.

A NEW APPROACH to ENHANCING the INTERFACE COHERENCY in NANO CARBIDE. 2

Microstructural evolution of amorphous Co-W-C powder at different temperatures in Figure 1: (a) At room temperature, disordered amorphous structure; (b) at 550 °C, preferential nucleation of Co3W3C nanocrystals; (c) at 750 °C, coexistence of amorphous matrix, Co3W3C nanophase, and a small amount of WC nanocrystals; (d) at 800 °C, nearing completion of crystallization; (e) at 900 °C, fully crystallized nanocrystalline structure; (f) at 1150 °C, dense nanocrystalline structure with only WC and Co phases.

A NEW APPROACH to ENHANCING the INTERFACE COHERENCY in NANO CARBIDE. 3

 

Figure 2: Phase and composition analysis of samples after heating-quenching at 800 °C and 900 °C:

(a) High-resolution transmission electron microscopy (HRTEM) image and phase analysis of the amorphous powder heated at 800 °C.

(b) Atom probe tomography (APT) analysis of the distribution of W, Co, and C elements in the sample heated at 900 °C.

(c) Phase configuration of the localized region determined by the composition analysis in (b).

 

 

A NEW APPROACH to ENHANCING the INTERFACE COHERENCY in NANO CARBIDE. 4

 

Figure 3: Observation of WC crystal nucleation and growth from the amorphous matrix on typical characteristic crystal planes:

(a-c) Formation and growth characteristics of the (110) crystal plane of WC, corresponding to the heating-quenching conditions at 750 °C, 800 °C, and 850 °C, respectively.

A NEW APPROACH to ENHANCING the INTERFACE COHERENCY in NANO CARBIDE. 5

 

Figure 4: Characteristics of grain boundaries and phase boundaries in the sample heated and quenched at 850 °C:

(a) Co3W3C/WC and WC/hcp-Co coherent phase boundaries.

(b) WC/fcc-Co coherent phase boundary.

(c) Coalescence and growth of WC with the same orientation.

(d) Coalescence and growth of WC grains with Σ2 grain boundaries.

 

A NEW APPROACH to ENHANCING the INTERFACE COHERENCY in NANO CARBIDE. 6

 

Figure 5: In the fully densified nano carbide sintered at 1150 °C, containing only WC and Co phases, examples of coherent interfaces are shown:

(a) WC/fcc-Co phase boundary.

(b) WC/hcp-Co phase boundary.

 

S? k?t lu?n

The nano carbide prepared in this study exhibits both high hardness (1775±23 kgf/mm2) and high fracture toughness (15.20±0.13 MPa·m^1/2), achieving a comprehensive mechanical performance at the forefront of similar materials in the literature. The significant increase in the proportion of special coherent interfaces in the nanocrystalline carbide, prepared through the crystallization and in-situ reaction of amorphous powder mixture and subsequent sintering densification, promotes the transfer of stress across phase boundaries between the hard phase and tough metallic phase, ensuring continuity in the deformation of the metallic phase and ceramic phase. Consequently, the interfaces in the carbide prepared by this method allow for uniform strain distribution from the metallic to the ceramic phase, avoiding stress concentration. As a result, the material exhibits not only high hardness due to nanoscaling but also significantly improved fracture toughness, thanks to the presence of a high proportion of special coherent interfaces.

 

nano carbide

Figure 6: Microstructure of the prepared nanocrystalline carbide and the continuous deformation mechanism of the metallic phase and ceramic phase at coherent interfaces:

(a) Morphology of WC and Co grains in the material after compression.

(b) Dislocations crossing through the semi-coherent WC/Co phase boundary within Co and WC grains.

(c) Schematic illustration of the dislocation motion between adjacent phases and continuous deformation across the WC/Co phase boundary.

(d) Deformation incompatibility and discontinuity at the incoherent WC/Co phase boundary.

 

CáCH TI?P C?N M?I ?? N?NG CAO TíNH K?T H?P GIAO DI?N TRONG NANO CARBIDE. 7

 

 

Tr? l?i

Email c?a b?n s? kh?ng ???c hi?n th? c?ng khai. Các tr??ng b?t bu?c ???c ?ánh d?u *

国产精品欧美日韩视频二区-少妇人妻系列中文在线-精品人妻一区二区三区四区不卡-少妇被无套内谢免费视频| 亚洲欧美日本成人在线-伦理视频在线观看一区二区三区-日韩精品中文字幕人妻-四虎永久地址在线观看| 性感红唇美女扒内裤视频网站-国产精品日本一区二区三区在线-久久99午夜福利视频-国产高清露脸自拍视频在线播放| 尤物视频在线观看网址-欧美午夜精品久久福利-久久这里只有精品视频5-国产精品成人综合色区| 亚洲a级一区二区三区-人妻中文字幕精品在线-日韩精品中文字幕人妻系列-香蕉久久最新精品视频| 久久精品极品盛宴免视-五月综合激情中文字幕-精品中文字幕一区二区精彩-中文字幕熟女日韩人妻| 亚洲三级免费在线播放-国产男女做a视频免费在线观看-六月婷婷缴情七月丁香-国产黄色片三级久久久| 男人天堂色男人色偷偷-国产内射在线干得爽到语无次-国产成人亚洲欧美二区综合-精品欧美高清视频观看| 乱女乱妇熟女熟妇综合网-亚洲都市激情中文字幕-日韩精品中文字幕在线-在线观看国产中出白浆| 男女公园上摸下揉视频-日本精品视频一二区-激情久久综合久久人妻-伊人成人综合在线视频| 欧美日韩你懂的在线观看-国产欧美日韩亚洲一区二区-国产无遮挡裸体免费久久-亚洲国内精品久久久久久| 九九久久精品国产婷婷-亚洲少妇视频在线观看-国产网友精品自拍视频-超碰在线成人免费精品| 成年深夜在线观看视频-成人国产av精品在线-av乱亚洲一区二区三区-亚洲精品综合一区二区在线| 亚洲黄色一级二级三级在线观看-成年人手机视频在线观看-都市激情校园春色亚洲一区-九九久久免费视频一区二区三区| 人人玩精品人妻丰满少妇-亚洲综合一区二区三区四区五区-亚洲av日韩av偷拍-亚洲欧美日韩一本一二| 日韩网激情视频在线观看-国产午夜98福利视频在线观看-国产精品尤物极品露脸呻吟-日韩手机在线视频观看成人| 熟妇久久人妻中文字幕-国产精品久久久久精品三级人-亚洲蜜臀人妻中文字幕-国产一区二区内部视频| 开心五月这里只有精品-欧美日韩国产亚洲中文高-玩弄漂亮邻居少妇高潮-av资源中文在线天堂| 精品人妻在线一区二区三区-国内av在线免费观看-亚洲av影片一区二区三区-久久精品女同亚洲女同13| 蜜臀精品国产亚洲av尤物-日韩人妻少妇中文字幕-赶碰97在线公开视频-亚洲欧美日韩天堂综合| 日韩美女一区二区三区不卡顿-日本女优搜查官中文字幕-国产精品中文字幕自拍-欧美日韩天天干夜夜操| 成人午夜伦理在线观看-国产一级做a爰片久久-亚洲精品av一区二区三区-国产色区一区二区三区| 亚洲国产精品不卡毛片-青青青视频手机在线观看-在线视频中文字幕人妻-亚洲永久精品免费在线| 免费av毛片在线观看-av大全网站免费一区二区-欧美激情亚洲一区中文字幕-亚洲中文字幕久久精品| 黄片毛片av免费观看-四虎国产精品久久免费地址-精品午夜一区二区三区国产av-亚洲成a人一区二区三区久久| 国产成人啪午夜精品网站-国产乱码精品一区二区三区-男人天堂网av一区二区三区四区-亚洲第一区二区精品三区在线| 最新国产精品欧美日韩-日韩孕妇孕交在线视频-亚洲欧美日韩国产成人在线-欧美老熟妇性视频在线观看| 国产高清三级自拍视频-最近日本免费播放视频午夜-日本女优一级片中文字幕-在线播放深夜精品三级| 乱中年女人伦中文字幕久久-国产成人高清免费视频网站-中文字幕亚洲人妻在线视频-中文字幕剧情av在线| 成人精品一区二区三区不卡-十八禁啪啪啪一区二区三区-后入黑丝美女在线观看-国产熟女啪啪免费视频| 十八禁黄网站免费观看在线-欧美日韩精品久久久免-黄色av免费在线观看网站-国产在线高清一区二区三区av| 欧美日韩国产在线三级-少妇人妻精品一区二区三-调教熟妇女同在线观看中文字幕-亚洲成av人片一区二区三区不卡| 亚州一区二区五码在线观看-97在线视频免费公开-小明久久国内精品自线-人妻av天堂综合一区| 免费手机在线观看bbb视频-国产欧美亚洲精品第1页青草-国产黄a三级三18级三级看三级-宅男视频在线观看一区二区三区| 久久精品熟女亚洲av麻豆-国产精品久久99粉嫩-校园春色另类综合在线视频-久久亚洲精品国产日韩| 深夜福利导航在线观看-情色视频在线观看一区二区三区-丝袜美腿诱惑福利视频-国产最新福利一区二区三区蜜桃| 亚洲天堂成人av影院-日韩精品国产一区在线久草-欧美国产另类久久久精品-91午夜精品久久香蕉| 国产a国产片免费观看-国产男女羞羞的视频在线观看-熟女亚洲综合精品伊人久久-国产精品av中文字幕| 亚洲欧洲av一区二区久久-日本丰满熟妇中出在线-欧美一区二区三区人妻少妇-日韩成人av免费在线| 久久中文字幕亚洲天堂-午夜国产成人福利视频-亚欧天堂成人av成人-熟女乱中文字幕熟女熟妇| 日韩黄片av在线免费观看-久久精品国产亚洲av色哟哟-亚洲第一中文字幕少妇-91久久精品国产性色tv|