色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Research status

For WC-Co carbide, the rapidly advancing Powder Bed Fusion (PBF) additive manufacturing (AM) technology has shown unique advantages in producing complex structures of metal parts made of carbide. However, when manufacturing WC-Co carbide with high melting points and high content of hard phases, issues such as difficult-to-eliminate cracks, pores, abnormal grain growth, oxidation decarburization, and brittleness often arise, leading to poor mechanical properties of the produced carbide. In recent years, there have been many reports on the use of Green Additive Manufacturing-Debinding and Sintering (GAM-DS) technology to fabricate WC-Co carbide, which have shown significant advantages in addressing issues such as cracking, abnormal grain growth, oxidation decarburization, and brittleness in PBF carbide. However, the process of preparing green bodies is prone to defects such as pores, interlayer cracks, uneven carbon distribution, and weak local bonding, resulting in problems such as porosity, uneven sintering shrinkage, and uneven microstructure in the sintered bodies. Compared with powder metallurgy, the prepared carbide have relatively low relative densities, and there is a significant gap in mechanical properties.

Brief introduction of research results

Recently, the State Key Laboratory of Powder Metallurgy at Central South University has employed Material Extrusion Additive Manufacturing (MEX) – Debinding and Sintering (DS) technology to successfully produce high-strength and tough WC-9Co cemented carbide with no pores, no cracks, and uniform shrinkage in all directions. Its relative density is approximately 99.7%, and its Vickers hardness, transverse fracture strength, and fracture toughness reach 1525±3HV30, 3492±45MPa, and 20.4±0.5 MPa·m1/2 respectively. The comprehensive mechanical properties are comparable to those of high-performance WC-Co carbide prepared by powder metallurgy processes. The relevant work, titled “Material extrusion additive manufacturing of WC-9Co cemented carbide,” was published in the top international journal “Additive Manufacturing.”

 

research chart

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 2

FIG. 1 Microstructure of MEX WC-9Co cemented carbide green

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 3

FIG. 2 Schematic diagram of stack pore formation of cemented carbide printing green billet: a. MEX stack pore formation; b. Increasing the overlap rate of microfilaments is conducive to reducing the stack porosity of green billet;

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 4

FIG. 3 Microstructure of MEX-DSWC-9Co cemented carbide

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 5

Figure 4 Micro-CT analysis results of internal defects in MEX-DS WC-9Co cemented carbide

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 6

Figure 5 Microstructure of WC-9Co cemented carbide: (a) MEX-DS; (b) Press forming – degreasing sintering

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 7

Figure 6 MEX-DS WC-Co carbide Co pool and Co rich zone

WC-Co carbide

Figure 7 Transverse fracture strength and fracture toughness of WC-(8-12)Co cemented carbide prepared by different processes

 

Tóm l??c

Conclusion of the Paper

(1) By calculating the plasticity index of the printed feedstock with a powder loading of 54 Vol.%, the mechanism of green body printing defects was analyzed, and the green body MEX parameters were optimized. Using optimized parameters such as a printing temperature of 150°C, filament overlap rate of 30%, and printing layer thickness of 0.1mm, defect-free green bodies of WC-9Co cemented carbide with a relative density of 98.5% were prepared.

(2) Both excessively high or low temperatures during the debinding process using n-heptane can lead to debinding cracks. Rapid solvent evaporation during the drying process of debound bodies can also result in microcracks. By employing a two-step solvent debinding process, namely, n-heptane debinding at 30°C for 12 hours followed by kerosene debinding at 30°C for 1 hour, the solvent evaporation rate was reduced, resulting in high-quality debound bodies with no noticeable debinding defects and uniform distribution of binder.

(3) Defects in MEX green bodies can lead to the formation of Co-rich regions or pools, abnormal WC grains, residual pores, etc., in WC-Co carbide. These defects can be improved or eliminated during the sintering process through liquid phase flow and rearrangement of WC particles. By optimizing the MEX green body printing and solvent debinding processes to eliminate printing and debinding defects, it is possible to eliminate defects such as sintering pores, cracks, Co pools, abnormal grain growth, etc., in WC-Co carbide, resulting in near-full-density WC-9Co carbide.

(4) By employing MEX green bodies, a two-step solvent debinding process, and a continuous thermal debinding-vacuum pressure sintering process, WC-9Co carbide with uniform microstructure, smaller grain size, and relatively uniform distribution were prepared. The Vickers hardness, transverse fracture strength, and fracture toughness were measured to be 1525±3HV30, 3492±45MPa, and 20.4±0.5MPa·m1/2, respectively. The comprehensive mechanical properties were superior to those reported by recent additive manufacturing technologies and comparable to those of WC-Co carbide prepared by traditional powder metallurgy processes.

Main Innovations of the paper of WC-Co carbide additive manufacturing

The use of WC-Co carbide MEX-DS technology to prepare near-full-density WC-9Co carbide, with a transverse fracture strength reaching 3492MPa and a fracture toughness exceeding 20MPa·m1/2, has significantly improved the transverse fracture strength of WC-Co carbide prepared by current AM methods (ranging from 1500-2000 MPa to 3000-4000MPa with HIP treatment) and increased fracture toughness to above 20MPa·m1/2. The comprehensive mechanical properties are significantly better than those reported by similar studies and comparable to similar products prepared by powder metallurgy. The research results are of great significance for addressing the challenging issues of porosity, cracks, and harmful phases encountered in current carbide additive manufacturing and for the development of carbide additive manufacturing technology.

Tr? l?i

Email c?a b?n s? kh?ng ???c hi?n th? c?ng khai. Các tr??ng b?t bu?c ???c ?ánh d?u *

国产福利一区二区写真-久久国产电影在线观看-亚洲国产一区二区三区亚瑟-中文字幕乱码亚洲无线码二区| 中文字幕一区二区三区日韩精品-久久老熟女一区二区三区福利-久久精品国产自产对白一区-午夜欧美牲交激情网站| 国产a国产片免费观看-国产男女羞羞的视频在线观看-熟女亚洲综合精品伊人久久-国产精品av中文字幕| 日韩性插视频在线观看-岛国在线播放免费av-亚洲午夜精品一区二区蜜桃-国产精品一区二区久久蜜桃麻豆| 日韩av手机在线观看免费-91精品人妻一区二区三区精-最近在线视频免费播放-国产亚洲欧洲在线观看| 中出少妇中文字幕一区二区三区-九九久久精品国产亚洲-美女免费是黄的一区二区av-日本在线视频观看91| 日韩一区二区精品在线观看-日韩熟妇中文色在线视频-亚洲午夜精品免费福利-国产精品一区第二页尤自在拍| 九九久久精品国产av-日本高清在线观看一区二区-精品熟女视频一区二区三区-亚洲欧洲成熟熟女妇专区乱| 青青草视频在线观看免费网站-国产精品久久久久久亚洲影-在线播放国产精品一区二区-青青草免费观看高清视频| 日本老熟妇在线视频网-精品人妻在线一区二区三区视频-91亚洲国产成人精品福利-青青草免费手机直播视频| 午夜福利国产原创精品-久久综合激情日本熟妇-国产熟女50岁一区二区-国产另类视频一区在线| 中文字幕日韩精品人妻久久久-午夜福利激情视频在线观看-蜜桃黄网站视频在线观看-国产丰满熟女夜夜嗨av| 97资源视频在线观看-青草视频在线免费播放-最新日韩中文字幕在线播放-成人国产av精品麻豆网站| 日本三区三级岛国片在线观看-免费av在线观看岛国大片-av在线导航国产精品-中文资源网天堂网亚洲精品| 国产特级黄色录像视频-成人亚洲精品专区高清-国产97在线免费观看-91精品青草福利久久午夜| 日韩欧美国产在91啦-激情偷拍自拍在线观看-一本大道久久香蕉成人网-亚洲精品中文字幕观看| 欧美日韩偷拍丝袜美女二区-精品少妇人妻av免费久久洗澡-四虎精品永久在线观看视频-亚洲国产成人一区二区在线观看| 天堂网日韩一区二区三区四区-自拍视频在线观看地址-91麻豆视频免费入口-国产理论片一区二区三区| 亚洲欧美日韩另类第一页-亚洲欧美日本综合久久-亚洲一本之道高清在线观看-不卡在线一区二区三区视频| 亚洲精品在线观看一区二区三区-亚洲高清在线自拍视频-日本一区二区三区午夜视频-日韩精品极品视频在线| 亚洲中文成人乱码在线-国产一区二区三区久久综合-成人在线观看免费国产视频-一区二区水蜜桃视频在线观看| 青草青青视频精品在线-久热这里只有精品视频免费-免费av一级国产精品-尤物视频网站在线播放| 精品人妻一区二区三区免费-亚洲国产精品久久一区二区-国内久久偷拍视频免费-蜜桃视频在线观看网址| 91国际精品麻豆视频-蜜臀av国产在线观看-av一区二区三区精品-人妻精品一区二区三区av| 日韩人妻毛片中文字幕-国产精品亚洲综合第一页-国产精品久久亚洲av-亚洲国产精品一区二区不卡| 亚洲国产高清一区二区三区不卡-亚洲综合小综合中文字幕-亚洲黄色成人av在线-日韩一区二区三区av观看| 国产精品高潮呻吟久久av嫩-青青草免费公开在线观看视频-亚洲欧美日韩另类综合视频-国产三级在线观看精品| 精品人妻一区二区三区久久91-久久精品亚洲国产av搬运工-日本熟女人妻一区二区三区-亚洲国产精品高清线久久| 国产精品久久一区二区三区-四虎国产精品亚洲精品-最新中文字幕日本久久-午夜性色福利在线视频| 亚洲激情文学国产激情-一本色道久久综合亚洲精品高-国产精品高清在线播放-九九热视频在线观看精品| 日韩av高清不卡一区二区-国产亚洲性色av大片久久香蕉-国产亚洲欧美韩国日本-国产精品国产三级国产普通话对白| 日韩av高清不卡一区二区-国产亚洲性色av大片久久香蕉-国产亚洲欧美韩国日本-国产精品国产三级国产普通话对白| 少妇被爽到高潮喷水在线播放-国产精品中文字幕在线不卡-中文字幕不卡一区二区三区-精品国产一二三区在线观看| 91精品天堂福利在线观看漫画-亚洲国产精品一区亚洲国产-亚洲国产成人最新精品资源-亚洲国产精品成人综合久| 在线免费观看四虎黄色av-亚洲成人av高清在线-成人性生交大片免费在线-四虎成人精品在线观看| 日本亚洲一线二线三线-九月丁香婷婷啪啪色综合-狠狠综合欧美综合欧美色-亚洲丁香视频中文在线| 国产 av 一区二区三区-日韩黄色三级三级三级-久久精品视频这里只有精品-日韩精品中文字幕亚洲| 九九久久精品国产婷婷-亚洲少妇视频在线观看-国产网友精品自拍视频-超碰在线成人免费精品| 在线免费观看四虎黄色av-亚洲成人av高清在线-成人性生交大片免费在线-四虎成人精品在线观看| 不卡一区二区三区视频-国产亚洲91精品色在线观看-国产精品青草久久福利不卡-国产黄色免费精品网站| 亚洲精品人妻中文在线-国产成人精品视频三级-麻豆视频黄片在线免费观看-亚洲性色精品一区二区在线|