色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The knowledge of carbide grade identification will be shared in this article.Carbide is renowned for its high hardness, strength, corrosion resistance, and wear resistance. With the continuous expansion of the carbide market demand, it is widely applied in various fields such as construction, military, electronics and communication, aerospace, mechanical processing, metallurgy, petroleum exploration, and mining.

The classification of carbide?grades is mainly divided into three categories: cutting tool carbide?grades, geological and ore tool carbide?grades, and wear-resistant parts carbide?grades.

carbide grade

Carbide?Grades for Cutting Tools

The carbide?grades for cutting tools are mainly classified into six categories based on their application areas: P, M, K, N, S, and H. The identification of carbide?grades for cutting tools involves testing various indicators such as element composition, Rockwell hardness, Vickers hardness, flexural strength, metallographic structure (porosity, non-combined carbon, macroscopic pores), etc. The alloy performance recommended for operating conditions is primarily assessed based on indicators like wear resistance, toughness, cutting speed, feed rate, etc. The representation rules for carbide?grades for cutting tools are mainly composed of category codes, group numbers, and sub-group numbers, as shown in the diagram below.

How to Identify Carbide?Grades? 2

concrete categories of carbide grade for cutting tools

1.Grade P carbides are mainly divided into sub-grades P01, P10, P20, P30, and P40. The primary components include TiC and WC as the base, utilizing Co (Ni+Mo, Ni+Co) as a binder for carbides or coated alloys. Grade P carbides are primarily used for machining long chip materials such as steel, cast steel, and long-chipping malleable cast iron.

2.Grade M carbides are mainly divided into sub-grades M01, M10, M20, M30, and M40. The main components are WC as the base, with Co as a binder and a small amount of TiC (TaC, NbC) added for carbides or coated alloys. Grade M carbides are mainly used for machining general alloy materials such as stainless steel, cast steel, manganese steel, malleable cast iron, alloy steel, and alloy cast iron.

3.Grade K carbides are mainly divided into sub-grades K01, K10, K20, K30, and K40. The primary components are WC as the base, using Co as a binder and adding a small amount of TaC and NbC for carbides or coated alloys. Grade K carbides are primarily used for machining short chip materials such as cast iron, chilled cast iron, short-chipping malleable cast iron, and gray iron.

4.Grade N carbides are mainly divided into sub-grades N01, N10, N20, and N30. The main components are WC as the base, using Co a binder and adding a small amount of TaC, NbC, or CrC for carbides or coated alloys. Grade N carbides are mainly used for machining non-ferrous metal materials such as aluminum, magnesium, plastics, and wood.

5.Grade S carbides are mainly divided into sub-grades S01, S10, S20, and S30. The primary components are WC as the base, using Co as a binder and adding a small amount of TaC, NbC, or TiC for carbides or coated alloys. Grade S carbides are mainly used for machining heat-resistant and high-quality alloy materials containing nickel, cobalt, and titanium.

6.Grade H carbides are mainly divided into sub-grades H01, H10, H20, and H30. The main components are WC as the base, using Co as a binder and adding a small amount of TaC, NbC, or TiC for carbides or coated alloys. Grade H carbides are mainly used for machining hard chip materials such as quenched and hardened steel and chilled cast iron.

Carbide?Grades for Geological and Ore Tools

The characteristic code for carbide?grades used in geological and ore tools is represented by the letter “G,” and the group codes include 05, 10, 20, 30, 40, 50, and 60. The classification codes are A, B, C, D, E, F, W, and Z. The corresponding classifications for the classification codes are as follows:

How to Identify Carbide?Grades? 3

The representation rules for carbide?grades used in geological and ore tools primarily consist of characteristic codes, classification codes, group codes, and sub-group codes. An example is shown in the diagram below:

How to Identify Carbide?Grades? 4

The main components of carbides used in geological and ore tools are based on WC, with Co as a binder, and the addition of trace elements for carbides or coated alloys. The identification of carbide?grades for geological and ore tools primarily involves testing various indicators such as element composition, Rockwell hardness, Vickers hardness, flexural strength, and metallographic structure (porosity, non-combined carbon, macroscopic pores). For these carbides, the recommended alloy performance under operating conditions is primarily assessed based on indicators such as wear resistance and toughness.

Cabide Grades for Wear-Resistant Parts

The characteristic code for carbide?grades used in wear-resistant parts is represented by the letter “L,” and the classification codes include S, T, Q, and V. The carbide?types represented by the classification codes are as follows:

How to Identify Carbide?Grades? 5

The group codes for carbide?grades used in wear-resistant parts are respectively S: 10, 20, 30, 40; T: 10, 20, 30; Q: 10, 20, 30; V: 10, 20, 30, 40. The representation rules include characteristic codes, classification codes, group codes, and sub-group codes.

The main components of carbides used in wear-resistant parts are based on WC, with Co (or Co+Ni) as a binder, and the addition of trace elements for carbides or coated alloys. The identification of carbide?grades for wear-resistant parts primarily involves testing various indicators such as element composition, Rockwell hardness, Vickers hardness, flexural strength, and metallographic structure (porosity, non-combined carbon, macroscopic pores).

Tr? l?i

Email c?a b?n s? kh?ng ???c hi?n th? c?ng khai. Các tr??ng b?t bu?c ???c ?ánh d?u *

无套进入极品美女少妇-新久久久高清黄色国产-国产肥臀在线精品一区二区-深夜午夜福利在线观看| 日本人妻中文字幕久久-色老汉免费在线观看一区-成人国产在线观看网站-欧美日韩国产亚洲一区二区三区| 中文人妻久久精品一区二区-国产男女猛烈无遮挡免费视频网址-午夜福利成人一区二区三区在线-岛国av一区二区国产精品| 97中文字幕一区二区三区-国产精品亚洲av无人-亚洲国产精品自产拍久久-成人深夜福利在线视频| 亚洲一区二区三区日本久久-精品国产成人一区二区不卡在线-91精品国产色综合久久成人-一区二区三区成人在线观看| 欧美日韩激情片在线观看-色男人天堂网在线观看-亚洲一级特黄大片免色-国产十八禁免费在线观看| 日本三区三级岛国片在线观看-免费av在线观看岛国大片-av在线导航国产精品-中文资源网天堂网亚洲精品| 国产成人高清视频在线观看免费-人妻精品一区二区在线视频-国产成人一区二区三区精品久久-农村肥白老熟妇20p| 国产成人综合激情婷婷-亚洲国产综合在线观看不卡-色综网久久天天综合狼人-亚洲av高清在线不卡| 亚洲成人av综合在线-日韩精品久久久中文字幕人妻-国产精品无套白嫩剧情-五月婷婷久久激情综合| 亚洲一区二区三区四区中文字幕-精品久久久久久蜜臀-国产传媒视频免费观看网站-国产三级在线观看一区二区| 人妻av久久人妻水蜜桃-国产一区视频在线二区-五月婷六月丁香久久综合-国产精品中文字幕有码| 亚洲国产精品不卡毛片-青青青视频手机在线观看-在线视频中文字幕人妻-亚洲永久精品免费在线| 少妇被搞高潮在线免费观看-亚洲av成人精品小宵虎南-日韩性生活免费看视频-日韩黄色大片在线播放| 密臀av免费在线观看-日韩欧美中文字幕美利坚-av黄色在线观看一区二区三区-日韩性做爰片免费视频看| 久久99国产欧美精品-深夜宅男宅女在线观看-骚虎三级在线免费播放-精品国模人妻视频网站| 亚洲少妇视频免费观看高清-亚洲午夜福利在线播放-偷拍偷窥精品视频在线-黄色大片国产免费永久网站| 人妻少妇av免费久久蜜臀-欧美国产日韩在线一区二区-美女被啪啪到深处好爽无套-日韩av一区在线资源播放| 熟女人妻中文字幕在线视频-91久久成人精品探花-国产精品黄色一区二区三区-99精品国产99久久久久97| 日本一区二区三区黄色网-亚洲国产综合久久天堂-精品国产乱码久久蜜桃-欧美少妇精品在线观看| 日本一区二区免费电影院-亚洲精品成人av观看-国产级一片内射视步页-日韩高清在线亚洲专区视频| 日本岛国三级黄色录像-日韩久久成人免费电影-中文字幕日韩专区一区二区-国产成人大片在线播放| 国产很黄免费观看久久-亚洲变态另类一区二区三区-欧美在线免费观看黄片-成人av不卡在线播放| 青草青青视频精品在线-久热这里只有精品视频免费-免费av一级国产精品-尤物视频网站在线播放| 亚洲伊人色综合网站亚洲伊人-香蕉久久国产超碰青草91-激情综合七月插插综合-亚洲一区二区三区夏目彩春| 少妇无套内谢免费视频-色婷婷性感在线观看视频-国产免费黄色一级大片-国产亚洲精品麻豆一区二区| 国产精彩自拍视频在线-岛国视频免费在线播放-91久久精品国产综合另类专区-午夜福利欧美激情福利| 亚洲国产成人精品毛片九色-成年片黄色大片品赏网-亚洲男人天堂色噜噜av-人妻免费精品久久一区| 国内自拍精品视频在线-欧美黑人巨大一区二区三区-中文字幕日韩精品人妻-婷婷激情五月天中文字幕| 久久女婷五月综合色啪色老板-国内不卡的一区二区三区中文字幕-在线观看一区二区三区日韩-五月天丁香婷婷狠狠狠| 日韩一区二区三区视频在线观看-久久精品亚洲热综合一本色婷婷-国产亚洲精品视频一区二区三区-人妻中文字幕精品系列| 亚洲最大的偷拍视频网站-国产三级精品三级男人的天堂-国产成人免费精彩视频-一区二区精品日韩国产精品| 日本高清不卡一区二区三区-男女国产猛烈无遮挡色-精品九九热在线免费视频-日本一区二区福利在线观看| 免费av毛片在线观看-av大全网站免费一区二区-欧美激情亚洲一区中文字幕-亚洲中文字幕久久精品| 日韩久久久久久中文字幕-九九热视频精选在线播放-亚洲最大黄色成人av-亚洲最大av一区二区| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 中文字幕日韩精品人妻久久久-午夜福利激情视频在线观看-蜜桃黄网站视频在线观看-国产丰满熟女夜夜嗨av| 日本一区二区三区在线视频-国产午夜性生活免费视频-亚洲老熟妇av熟妇在线-久久热这里只有精品国产| 天堂av免费资源在线观看-青春草在线视频播放免费观看网站-亚洲精品中文字幕久久桃色-亚洲成人有码免费在线| 中文字幕国产剧情av-久久精品日韩欧美精品-玖玖热视频这里只有精品-国产黄色三级视频网站| 欧美高清视频在线高清观看-四虎最新在线播放视频-亚洲中文字幕永久在线全国-亚洲国产av成人精品成人|