色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Titanium alloy has a high specific strength among structural metallic materials, with a strength comparable to steel but only 57% of its weight. Additionally, titanium alloy has characteristics such as low density, high thermal strength, thermal stability, and good corrosion resistance. However, titanium alloy materials pose challenges in terms of machining difficulties and low processing efficiency. Therefore, overcoming the difficulties and low efficiency in titanium alloy processing has always been an urgent problem in need of solutions.

Reasons for the difficulty in processing titanium alloy

1Low thermal conductivity: Titanium alloy has a low thermal conductivity, resulting in high cutting temperatures during machining. Under the same conditions, the cutting temperature of TC4 alloy is more than twice as high as that of Grade 45 steel. The heat generated during machining is difficult to dissipate from the workpiece. Consequently, the cutting tools experience high temperatures, rapid wear of cutting edges, and reduced tool life.

2Low modulus of elasticity: Titanium alloy has a low modulus of elasticity, leading to significant springback on the machined surface. This is especially pronounced when machining thin-walled components, resulting in strong friction between the trailing edge of the cutting tool and the machined surface, leading to tool wear and chipping.

3Chemical reactivity: Titanium alloy exhibits strong chemical reactivity. At high temperatures, it readily reacts with oxygen, hydrogen, and nitrogen, causing an increase in strength and a decrease in ductility. The oxygen-enriched layer formed during heating and forging processes further complicates mechanical machining.

Why is titanium alloy difficult to process? 2

Principles of Machining Titanium Alloy Materials

During the machining process, the choice of tool material, cutting conditions, and machining time all have an impact on the efficiency and cost-effectiveness of cutting titanium alloys.

1.Selecting appropriate tool materials

Considering the properties of titanium alloy materials, machining methods, and processing conditions, the selection of tool materials should be done rationally. The tool material should be commonly used, cost-effective, have good wear resistance and high thermal hardness, and possess sufficient toughness.

2.Improving cutting conditions

The rigidity of the machine tool-fixture-tool system should be enhanced. Clearances between different parts of the machine tool should be adjusted properly, and the radial runout of the spindle should be minimized. The workpiece should be securely clamped in the fixture, ensuring sufficient rigidity. The cutting portion of the tool should be kept as short as possible, and the thickness of the cutting edge should be increased, while ensuring sufficient chip space, in order to enhance the strength and rigidity of the tool.

3Apply appropriate heat treatment to the workpiece material

By employing heat treatment, the properties and metallographic structure of titanium alloy materials can be altered, aiming to improve their machinability.

4Choose appropriate cutting parameters

The cutting speed should be kept low. This is because the cutting speed has a significant impact on the temperature of the cutting edge. Higher cutting speeds result in a drastic increase in cutting edge temperature, which directly affects the tool life. Therefore, it is crucial to select an appropriate cutting speed.

titanium alloy

Machining Techniques

1.Turning

Turning titanium alloy products can achieve good surface roughness and minimal work hardening. However, it leads to high cutting temperatures and rapid tool wear. To address these characteristics, the following measures are taken mainly in terms of tooling and cutting parameters: Tooling material: YG6, YG8, YG10HT are selected based on the existing conditions in the factory. Tool geometry parameters: Appropriate rake and relief angles, as well as rounded cutting edges. Lower cutting speeds, moderate feed rates, deeper cutting depths, sufficient cooling. When turning the outer diameter of the workpiece, the tool tip should not be positioned above the workpiece center to avoid tool interference. For finishing and turning thin-walled parts, a larger main rake angle is used, typically ranging from 75 to 90 degrees.

Why is titanium alloy difficult to process? 3

2.Milling

Milling titanium alloy products is more challenging compared to turning because milling involves intermittent cutting, and the chips tend to adhere to the cutting edge. When the chip-adhered teeth re-engage with the workpiece, they can dislodge and take away a small portion of the tool material, leading to tool edge failure and significantly reducing tool durability.

Milling method: Generally, conventional milling is employed. Tooling material: High-speed steel M42. Conventional alloy steel processing does not usually utilize conventional milling due to the influence of machine tool screw and nut clearances. In conventional milling, the milling cutter acts on the workpiece, generating a cutting force in the feed direction that can cause intermittent worktable movement, resulting in chattering. For conventional milling, the cutting edges encounter a hardened surface at the initial entry, which can lead to tool damage. However, in climb milling, the chips go from thin to thick, and initially, the tool may experience dry friction with the workpiece, exacerbating chip adhesion and tool edge failure. To ensure smooth milling of titanium alloys, attention should be given to reducing the rake angle and increasing the relief angle compared to standard milling cutters. Milling speed should be low, and the use of sharp-toothed milling cutters is preferred while avoiding the use of face milling cutters.

3Threading

Threading titanium alloy products can result in larger surface roughness values and higher torque due to the fine chips that easily adhere to the cutting edge and workpiece. Improper selection and handling of the tap can lead to work hardening, extremely low processing efficiency, and occasional tap breakage.

It is necessary to prioritize the use of high-quality taps with appropriate tooth engagement. The number of teeth on the tap should be fewer than standard taps, usually around 2 to 3 teeth. The cutting cone angle should be large, and the tapered portion is generally 3 to 4 times the thread pitch length. To facilitate chip evacuation, a negative rake angle can be ground on the cutting cone section. Selecting shorter taps can increase tap rigidity. The reverse tapered portion of the tap should be appropriately enlarged compared to standard taps to reduce friction between the tap and the workpiece.

4Reaming

When reaming titanium alloy, tool wear is not severe, and both carbide and high-speed steel reamers can be used. When using carbide reamers, it is necessary to adopt a similar process system rigidity as in drilling to prevent reamer breakage. The main problem encountered when reaming titanium alloy holes is poor surface finish. It is necessary to narrow the cutting edge width with an oilstone to avoid adhesion between the edge and the hole wall, while ensuring sufficient strength. Generally, a cutting edge width of 0.1 to 0.15 mm is preferred.

The transition between the cutting edge and the calibration section should be a smooth arc, and it should be promptly reground after wear. It is important to ensure consistent size of the circular arcs on each tooth. If necessary, the size of the calibration section can be increased.

5.Drilling

Drilling titanium alloy is relatively challenging and often encounters issues such as tool burning and drill breakage during the machining process. This is mainly caused by factors such as poor tool grinding, inadequate chip evacuation, insufficient cooling, and poor process system rigidity. Therefore, attention must be paid to proper tool grinding in titanium alloy drilling. This includes using a large point angle, reducing the front angle of the outer edge, increasing the back angle of the outer edge, and adding a reverse taper to the drill point 2-3 times that of a standard drill.

Why is titanium alloy difficult to process? 4

Frequent tool retraction and timely removal of chips are important, and the shape and color of the chips should be observed. If feather-like chips or color changes occur during drilling, it indicates that the drill bit is dull and should be promptly replaced or reground.

The drill fixture should be securely fixed on the worktable, and the guiding cutting edge of the drill should be close to the work surface. Using shorter drill bits is preferable. Another important consideration is when using manual feed, the drill bit should neither advance nor retreat in the hole, as this can cause friction between the drill edge and the work surface, resulting in work hardening and dulling of the drill bit.

6.Grinding

Common issues encountered in grinding titanium alloy components are clogging of the grinding wheel due to chip adhesion and surface burn on the components. The poor thermal conductivity of titanium alloy is the main reason for generating high temperatures in the grinding zone, resulting in adhesion, diffusion, and intense chemical reactions between titanium alloy and the abrasive material. Chip adhesion and clogged grinding wheel significantly decrease the grinding ratio. Diffusion and chemical reactions further lead to surface burn on the workpiece, resulting in reduced fatigue strength, which is particularly evident when grinding titanium alloy castings.

To address this problem, the following measures are taken:

  • Select appropriate grinding wheel materials: Green silicon carbide TL. Slightly lower wheel hardness: ZR1.
  • Control the cutting parameters of titanium alloy materials during grinding, including tool materials, cutting fluid, and process parameters. This is essential for improving the overall efficiency of titanium alloy material machining.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

一本大道加勒比东京热-国产一二三区亚洲精品美女-国产在线麻豆在拍91精品-久久久久成人亚洲国产| 男人的精品天堂一区二区在线观看-婷婷久久香蕉毛片毛片-久久视频在线观看夫妻-亚洲国产一区久久yourpan| 精品视频人妻少妇一区二区三区-人妻中文字幕一二三区-日本老熟妇成熟老妇人-东京热国产精品二区三区| 久久久精品国产亚洲av高清涩受-国产精品一区二区三区成人-欧美日韩国产精品视频一区二区三区-大陆美女阴户特写毛片| 九九热在线视频精品一-国产乱码精品一区二区蜜臀-乱妇乱熟女妇熟女网站视频-国产精品午夜视频在线| 一本色道久久综合亚洲精-亚洲精品一区二区三区乱码-性生活高清免费视频免费-99热这里只有的精品3| 日韩美女一区二区三区不卡顿-日本女优搜查官中文字幕-国产精品中文字幕自拍-欧美日韩天天干夜夜操| 国产特级黄色录像视频-成人亚洲精品专区高清-国产97在线免费观看-91精品青草福利久久午夜| 精品人妻中文字幕有码在线-亚洲欧美一区二区成人精品久久久-亚洲第一人伊狼人久久-亚洲国产欧美精品在线观看| 国产精品中文字幕久久-国产精品一区二区在线免费-韩国午夜三级一区二区-亚洲国产成人精品一区刚刚| 男人天堂色男人色偷偷-国产内射在线干得爽到语无次-国产成人亚洲欧美二区综合-精品欧美高清视频观看| 国产精品免费av一区二区-91在线日本在线观看-免费在线激情视频网址-亚洲午夜福利影院在线免费观看| 国产精品自在线拍国产-久久精品韩国日韩精品-久久夜色国产精品亚洲av蜜桃-日韩精品一区二区三区四区免费| 蜜桃在线观看免费网站-亚洲成熟女性一级黄色蝶片-日韩一级黄色片天天看-一区二区三区在线视频观看美女| 91精品国产精品国产-国产成人一区二区免av-亚洲av激情在线观看-一区二区三区亚洲精品在线观看| 青青草原av青青草原-美日韩精品一区二区三区-中文字幕日本乱码在线-久久热久久热在线视频| 免费十八禁一区二区三区-国产精品一区二区三区99-在线一区二区三区男男视频观看-精品欧美一区二区三区人妖| 精品国产高清一区二区广区-午夜少妇激情视频网站-亚洲av日韩精品一区在线-青草亚洲免费在线观看| 日韩精品中文一区二区三区在线-午夜视频国产在线观看-日韩中文字幕av有码-最新日韩精品视频免费在线观看| 蜜臀av午夜在线观看-亚洲欧美日韩成人综合在线-国产黄色一级性生活片-亚洲av高清一区二区三区麻豆| 蜜桃臀欧美日韩国产精品-最近欧美日韩一区二区-亚洲综合成人一区二区三区-免费五十路熟妇在线视频| 久久精品中文字幕一区二区-日本夫妻性生活视频播放-综合久久精品亚洲天堂-日韩中文字幕不卡久久| 日本免费精品一区二区三区四区-天天日天天射天天综合-国产在线精品免费av-高潮一区二区三区久久亚洲| 日本一区二区免费电影院-亚洲精品成人av观看-国产级一片内射视步页-日韩高清在线亚洲专区视频| 欧美亚洲午夜综合一区二区-亚洲大香蕉视频在线观看-国产综合激情人妻91麻豆-国产精品国产三级国产专不| 久久这里就有国产熟女精品-国产免费一级特黄录像-伊人久久热这里只有精品-国产三级一区二区三区在线观看| 在线观看日韩不卡视频-深夜福利成人羞羞免费视频-日韩欧美精品综合另类-黄色特级一级片中文字幕| 成人一区二区三区免费观看-国内久久偷拍精品视频-欧美人与性动α欧美精品z-性感美女勾引男人视频| 成年女黄网站色免费视频-福利在线一区二区三区-黑人狂躁日本妞一区二区三区-国产亚洲精品福利视频| 起碰在线视频免费播放-人妻在线视频一区二区三区-日韩伦理在线一区二区三区-久久女厕视频偷拍一区二区| 亚洲激情文学国产激情-一本色道久久综合亚洲精品高-国产精品高清在线播放-九九热视频在线观看精品| 日韩色视频免费观看网站大全-免费中文对白国产操片-国产农村妇女一页二页-欧美三级午夜理伦三级在线| 国产色片地址网日本激情-国产自偷在线拍精品热不卡-国产精品自产拍蜜臀av在线-成人区人妻精品一区二区三区| 国产精品日本一区二区不卡视频-尤物在线视频免费观看-中文字幕精品高清中国-最新精品国产自偷在自线| 国产做国产爱免费视频-男人免费视频一区二区在线播放-精品一区二区三区蜜桃麻豆-成年人免费看国产视频| 一区二区三区四区五区黄色-色哟哟精品免费专区在线-很色精品99在线观看-亚洲一区二区三区精品久久| 国产老熟女精品视频大全免费-精品丰满熟女一区二区蜜桃-亚洲自国产拍性生活自拍-中文字幕熟女激情50路| 一区二区在线观看黑人-久久久精品人妻一区二区三区综合-成人内射国产免费观看-四虎在线免费视频观看| 国产精品午夜免费福利-亚洲香蕉视频网在线观看-四虎私人福利妞妞视频-91国产丝袜在线观看| 亚洲一区二区三区四区中文字幕-精品久久久久久蜜臀-国产传媒视频免费观看网站-国产三级在线观看一区二区| 国产成人综合中文字幕-中文字幕午夜五月一二-在线视频精品一区二区三区-久久96精品国产亚洲av蜜臀|