色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Overview

In recent years, research on coarse grain carbide grades and materials has been advancing in two different directions: ultra-coarse and ultra-fine grains. Ultra-coarse grain cemented carbides have been widely applied in mining rock drilling tools, roll mills, and stamping molds.

Studies have revealed several primary forms of carbide failure during drilling: impact fatigue, abrasive wear, and thermal fatigue. For hard rock formations, such as granite (drilled with impact or rotary impact drills), abrasive wear is relatively lower, and carbide failure is primarily caused by impact and impact fatigue. The compressive strength and bending strength of the carbide are directly related to its impact fatigue resistance; additionally, this resistance is associated with the carbide’s purity, WC grain size, and Co phase’s average free path. Furthermore, the carbide’s impact fatigue resistance is directly related to the impact energy.

Reasons for Issues in Cemented Carbide Rock Drilling

For medium-hard rock formations, such as quartzite (drilled with impact drills), abrasive wear dominates. Abrasive wear generally consists of two aspects: micro-cracks at the contact points of abrasive particles and premature wear of the Co phase. The former primarily occurs on hard and brittle carbides, especially when abrasives have high fracture strength; the latter occurs on softer carbides with higher Co content, particularly when abrasives are very brittle. Figure 1 shows a scanning electron microscope (SEM) image of the wear surface of a GF20D grade drill tooth, produced by Xiamen Jinlu Special Carbide Co., Ltd., after drilling about 500 meters into quartzite. The YG6 grade carbide, composed of 94% WC with a grain size of 2-3 μm and 6% Co, has a hardness of HV30:1430. The image illustrates typical abrasive wear, characterized by premature Co phase wear and cracking and spalling of the WC phase.

For soft rock formations, such as sandstone, thermal fatigue is the primary cause of carbide failure, accompanied by abrasive wear. For ultra-soft rock formations, such as calcite and limestone, thermal fatigue is the main cause of carbide failure. The propagation of cracks and premature wear of the Co phase directly impact the drill tooth’s lifespan. Especially when drilling magnetite, thermal fatigue cracks, also known as creep cracks, dominate. Figure 2 shows a typical undulating cracking morphology of cemented carbide drill teeth formed while drilling magnetite. Figure 3 is an SEM image of a traditional polished cross-section of a carbide drill tooth that drilled about 5 meters into magnetite, composed of 94% WC with a grain size of 5 μm and 6% Co, with a hardness of 1230 HV. The image reveals that the thermal fatigue cracks on the carbide surface have extended into the carbide’s interior.

How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 1

Figure 1: SEM photo of the wear surface of the quartzite at a depth of about 500 meters on the YG6 drill tips inserted in drill bits

 

How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 2

Figure 2. Typical ups and downs of crack morphology formed when carbide drill teeth drill magnetite

 

How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 3How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 4

Figure 3. The carbide drill teeth drill a conventional polished cross-section of about 5m into the magnetite. The grade consists of 94% WC with a grain size of 5um and 6% Co with a hardness of 1230HV(SEM).

 

Reasons for Developing New Rock Drilling Cemented Carbides

The fundamental reason for developing new rock drilling carbides lies in the continuous advancement of mining and drilling technology both domestically and internationally. As drilling equipment becomes more advanced and drilling efficiency improves, there is a growing use of fully hydraulic, high-power, and high-efficiency rock drilling rigs and rotary-percussion drills. This advancement has raised higher demands for the quality and lifespan of rock drilling cemented carbides. When drilling tools penetrate rock, the pressure rises from 0 to 10 tons within 1/10 of a second, and the temperature increases from 20°C to 1000°C. During impact and rotation, drilling carbides generate extremely high temperatures. Especially when drilling magnetite, rapid formation of thermal cracks, commonly referred to as “snake skin” or “tortoise shell” cracks, occurs.

 

To meet the requirements of modern rock drilling technology, the performance of rock drilling cemented carbides needs to be improved and optimized in several key areas: the thermal conductivity (the ability of the material to conduct heat) should be as high as possible; the thermal expansion coefficient (the linear expansion of the material when heated) should be as low as possible to ensure minimal growth rate of thermal cracks; high-temperature hardness should be further enhanced to guarantee good wear resistance at high temperatures; in addition, the transverse rupture strength (TRS) and fracture toughness (Kic, the material’s ability to resist sudden fractures caused by micro-cracks) should also be improved.

 

Table 1 lists the thermal performance data of pure WC, pure Co, three commonly used WC-Co carbide grades, and three types of rock. These three grades, with varying Co content and WC grain sizes, are suitable for different rock drilling teeth, hot-rolled rolls, and multi-purpose applications.

How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 5

Directions for Developing New Rock Drilling Cemented Carbides

It is well known that Co has low thermal conductivity and a high thermal expansion coefficient. Therefore, the Co content should be minimized as much as possible. On the other hand, cemented carbides with high Co content exhibit better strength and fracture toughness. From a mechanical perspective, especially when carbide drill bits penetrate rock surfaces at high speeds, the drill bits endure high impact and loads, or mechanical vibrations under hard cutting conditions, necessitating improved strength and fracture toughness in the carbide. Additionally, compared to fine-grained carbides, coarse WC grain sizes contribute to greater strength and fracture toughness of the cemented carbide.

As a result, the preparation of rock drilling cemented carbides tends to use lower cobalt content and increase WC grain size to achieve good mechanical properties and the required high-temperature wear resistance. This approach results in ultra-coarse grain carbides. Traditionally, the production of ultra-coarse grain cemented carbides involves high-temperature reduction of coarse grain tungsten powder followed by high-temperature carburization to produce coarse grain WC powder. This powder is then mixed with Co powder and ball-milled to form a mixture, which is subsequently pressed and sintered to create the cemented carbide. However, coarse grain WC powder produced from tungsten powder via high-temperature carburization generally consists of polycrystalline particles, where each WC particle is composed of multiple WC single crystals.

Figure 4 shows a scanning electron microscope image of coarse grain carbide powder with a Feret diameter of 23.20 μm. The image reveals that each WC particle contains multiple WC single crystals. Although the original powder has a coarse grain size, after grinding, the polycrystalline particles easily break down into fine single crystal particles. Consequently, the ground WC powder has a Feret diameter of only 4.85 μm. Figure 5 shows the metallographic photo of a cobalt-containing carbide with 6% Co produced using conventional carbide production processes. The average grain size of this carbide is approximately 4.0 μm.

 

How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 6

Figure 4: SEM image of coarse grain WC powder with a particle size of 23.20 μm.

coarse grain carbide

Figure 5: Metallographic photo of WC-6% Co alloy produced from coarse grain WC powder with a particle size of 23.20 μm using conventional processing methods.

U.S. Patents 5505902 and 5529804 disclose methods for producing ultra-coarse grain cemented carbides. The methods outlined in these patents involve the dispersion and classification of coarse grain WC powder through jet milling and sieving to remove fine WC particles, selecting only the coarse-grained carbide, and then coating these WC particles with Co. Patent 5505902 utilizes the sol-gel method, where WC, methanol, and triethanolamine are mixed in a reactor. During heating, methanol evaporates, and Co precipitates onto the WC grains, forming a sol-gel.

 

Patent 5529804 employs the polyol method, where Co acetate, water, and WC are mixed and then spray-dried. The mixing process is optimized to prevent the breaking of coarse WC particles. The mixture produced using these patented methods is then subjected to conventional pressing and sintering processes to create cemented carbides with 6% Co and an average grain size of 13-14 μm, with porosity easily controlled between A02 and B02. This new carbide shows better WC matrix adjacency compared to carbides produced by traditional ball milling. Consequently, this new carbide has been successful in specific applications where conventional carbides fall short, such as in hard rock layers like granite and hard sandstone. In these cases, conventional column teeth fail due to Co dissolution at high temperatures, leading to spalling of elongated or hexagonal WC grains, and eventually, complete spalling of the drill bit within minutes, causing rapid crack propagation and subsequent fracture. In contrast, carbides produced with new technology can be used for extended periods in hard rock layers, displaying stable wear resistance without deep cracks. Due to the high adjacency of the WC matrix, the thermal conductivity of the 6% Co carbide with a WC average grain size of 14 μm can reach 134 W/m°C, which is 20% higher than that of coarse-grained carbides with the same Co content produced by traditional methods and comparable to the thermal conductivity of pure WC.

How Are New Grades of Ultra-Coarse Grain Rock Drilling Cemented Carbide Developed? 7

Application Examples of New Ultra-Coarse Grain Cemented Carbide Production Technologies

Two types of impact drilling cemented carbides were simultaneously produced using both traditional and new methods and tested in iron ore. Both samples had a WC average grain size of 8 μm, 6% Co, and 94% WC content.

Sample A: Produced using traditional ball milling, drying, pressing, and sintering processes. This carbide has a wide distribution of crystal sizes.

Sample B: The WC powder was subjected to jet dispersion and classification to remove coarser and finer WC particles, selecting 6.5-9 μm WC powder. The WC grains were pre-coated with 2% Co, and then 4% pure Co was added to achieve a 6% Co content. After wet mixing (without ball milling) to obtain the desired slurry, a thickening agent was added if necessary to prevent coarse grain WC sedimentation. The slurry was dried, shaped, and sintered, resulting in a narrower particle size distribution, with over 95% of the grains ranging from 6.5 to 9 μm. The adjacency of these carbides was measured: Sample A had an adjacency of 0.41, while Sample B had an adjacency of 0.61.

Testing was conducted in magnetite, which is prone to generating high heat and thermal fatigue. After drilling 100 μm, Sample A exhibited thermal cracking. Cross-sectional observation of the used carbide revealed small cracks extending into the carbide, damaging its microstructure and reducing its lifespan. With regrinding after every 100 μm of drilling, the carbide’s drilling lifespan was 530 meters. Sample B showed no or only minimal thermal cracking after drilling 100 meters. Cross-sectional observation showed no internal cracks, only some fractured surface grains. With regrinding after every 200 meters, the average drilling lifespan was 720 meters.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

亚洲天堂av资源在线-四虎永久免费在线观看国产-久久这里只有精品人妻-欧美黄色三级经典精品| 久久久精品国产亚洲av高清涩受-国产精品一区二区三区成人-欧美日韩国产精品视频一区二区三区-大陆美女阴户特写毛片| 国产亚洲精品第18页-久久精品理论午夜福利-99久久91热久久精品免费看-国产成人精品国产成人亚洲| 91久久国产综合蜜桃-深夜激情在线免费观看-免费观看国产在线视频不卡-天堂在线精品免费亚洲| 亚洲一级特黄大片做受-国产91喷潮在线观看-日本不卡一区二区三区四区-在线观看高清视频一区二区三区| 一区二区三区国产精品女人-日本成人在线视频91-国产午夜福利在线剧场-欧美日韩激情系列在线观看| 日本av在线一区二区三区-日韩人妻在线中文字幕-亚洲国产一区二区三区久久-国产日本一区二区三区久久| 亚洲人妻av在线播放-日韩午夜短视频在线观看-91精品久久午夜中文字幕-亚洲熟伦熟女新五十熟妇| 九九九热在线免费观看-亚洲午夜理论片在线观看-欧美日韩亚洲国产第一-国产高清一区二区av在线| 亚洲av成人午夜福利-青青草华人在线视频观看-久久99国产亚洲高清-中文字幕一区二区三区乱码人妻| 丰满女性丰满女性性教视频-国产日韩欧美精品av-日韩区一区二区三区在线观看-四虎国产精品成人免费久久| 日韩欧美国产在91啦-激情偷拍自拍在线观看-一本大道久久香蕉成人网-亚洲精品中文字幕观看| 日韩成av在线免费观看-中文字幕亚洲第一精品-亚洲欧美日韩国产在线-国产精品国精品国产免费| 国产精品国产三级国产专区55-伊人久久大香线蕉亚洲-av男人的天堂在线观看-国产女主播在线一区二区三区| 91精品国产色综合久久不88-黑人性做爰片免费视频看-房事插几下硬不起来了咋治疗-熟女乱一区二区三区四区| 国产亚洲精品首页在线播放-中文字幕国产av中文字幕-日本免费午夜福利视频-亚洲伦理一区二区三区四区| 美女被狂躁到高潮视频-国产熟女精品自拍视频-亚洲中文字幕在线精品一区-成人在线中文字幕电影| 一本色道亚州综合久久精品-91麻豆国产专区在线观看-一级二级三级国产视频-熟女av天堂免费高清| 日韩精品中文字幕人妻中出-日韩av在线免费播放-国产一级特黄一区二区三区-日本一区二区亚洲一区二区| 日韩免费看在线黄色片-国产精品人妇一区二区三区-国产精品网站一区在线观看-国产精品亚洲一区二区三区不卡| 亚洲男人天堂av在线-中文字幕人妻熟女人妻免费视频-日韩一区二区三区少妇人妻-视频一区二区三区自拍偷拍| 少妇裸淫交视频免费看-欧美日韩中文字幕第一页-91精品看黄网站在线观看-国产精品一区二区三区色噜噜| 国产精品女同一区二区久久夜-日本精品女人一区二区三区-亚洲成人久久久久久-激情五月婷婷综合激情| 国产亚洲成人精品久久久-亚洲免费av高清在线观看-在线观看国内自拍视频-亚洲国产成人精品综合色| 国产精品久久中文字幕网-国产亚洲av无色肉丝网站-自拍偷拍亚洲精品偷一-日本久久一区二区三区| 国产高清三级自拍视频-最近日本免费播放视频午夜-日本女优一级片中文字幕-在线播放深夜精品三级| 久久伊人蜜桃av一区二区-交换享用人妻在线观看-中文字幕国产精品综合-亚洲久悠悠色在线播放| 中出 中文字幕 久久-成人午夜大片免费在线观看-免费观看黄欧美视频网站-午夜福利观看在线观看| 深夜福利在线观看日韩-国产成人夜色高潮在线观看-熟女人妻少妇精品视频-97在线观看完整免费| 日本午夜av免费久久观看-国产精品夜色一区二区三区不卡-亚洲高清自有码中文字-青青草国产成人在线观看| 一本久道视频无线视频试看-亚洲国产精品一区二区三区久久-中文字幕色偷偷人妻久久-久久精品99国产精品中| 少妇被无套内谢免费视频看看-不卡中文在线观看网站-国产精品男女爽免费视频-91精品福利视频久久| 国内精品欧美久久精品-国产极品尤物美在线观看-日本经典视频一区二区三区在线-国模91九色精品二三四| 亚洲精品成人久久av中文字幕-中文av毛片在线观看-一本之道加勒比在线视频-日韩av一区二区在线观看不卡| 成年人午夜黄片视频资源-少妇高潮喷水在线观看-色网最新地址在线观看-人人爽人人澡人人人人妻那u还没| 亚洲中文字幕99精品-国产精品亚洲一区二区久久-国产精品久久久小黄片-国产不卡福利片在线观看| 精品人妻中文字幕有码在线-亚洲欧美一区二区成人精品久久久-亚洲第一人伊狼人久久-亚洲国产欧美精品在线观看| 久久噜噜噜精品国产亚洲综合-91精品国产高清久久福利-精品国产一区二区三区麻豆-日本加勒比一区二区在线观看免费| 午夜精品福利激情视频-婷婷国产五月天网久久精品-国产av麻豆嫩草视频-av日本中文字幕在线| 少妇被爽到高潮喷水在线播放-国产精品中文字幕在线不卡-中文字幕不卡一区二区三区-精品国产一二三区在线观看| 中出 中文字幕 久久-成人午夜大片免费在线观看-免费观看黄欧美视频网站-午夜福利观看在线观看|