色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

When a point of the component is subjected to a sufficiently large disturbance stress, a crack is formed after a sufficient number of cycles, and this phenomenon is called fatigue. Fatigue fracture is the main cause of failure of engineering structures and components. In the current application and research, there are four main types of fatigue testing methods:
1. Nominal stress and strain method;
2. Local stress and strain method;
3. Energy method;
4. Fracture mechanics method.
This article briefly introduces the four types of methods and their applications.

1. Nominal stress method

The nominal stress method is a method of applying a rated stress test to a standard component, and is classified into stress fatigue and strain fatigue according to the relationship between the maximum cyclic stress and the yield stress.
First, stress fatigue is introduced, which is defined as stress fatigue if the maximum cyclic stress Smax is less than the yield stress Sy. Due to the stress fatigue test, the material life is more than 104 times, so stress fatigue is also called high cycle fatigue. According to the theory of stress fatigue, the stress S of the metal material and the number N of cycles of the failure are nonlinearly distributed. Available power functions: take the logarithm: , or use exponential: take the logarithm to represent, this method is called S-N method. The results were analyzed using the S-N curve, or the p (survival rate)-S-N curve in the actual test.
Stress fatigue is generally used for the material fatigue S-N curve. As shown in Fig. 1 and Fig. 2, the fatigue limit of the AZ31B magnesium alloy (the stress ratio is 0.1 and the fatigue life is 107 corresponding to the fatigue load) is tested by the lifting method. The fatigue limit of the AZ31B magnesium alloy sample in the figure is 97.29 MPa.
Figure 1. AZ31B magnesium alloy fatigue test

The Introduction of Fatigue Test Methods 1

Figure 2. AZ31B magnesium alloy fatigue test S-N curve

The Introduction of Fatigue Test Methods 2

Strain fatigue is applied to the testing of high load, low design life components. The definition is: if the maximum cyclic stress Smax is greater than the yield stress Sy, it is strain fatigue. The stress fatigue test is used to study the component at high load and low frequency. For example, during the service life of the pressure vessel, the total number of cycles is on the order of 104. Therefore, strain is used as the fatigue performance parameter description. Stress fatigue is also known as low cycle fatigue.
Based on strain fatigue research scholars put forward the following theory, the stress-strain (Remberg-Osgood elastoplastic stress-strain) relationship of materials:

The Introduction of Fatigue Test Methods 3

In the formula, the εe elastic strain amplitude, εp is the plastic strain amplitude.
In the constant amplitude symmetric strain test, due to the plastic deformation of the material, the stress cannot be reduced by the original path when the strain is reduced, and the stress-strain curve is annular. This curve is called the hysteresis loop. As the number of cycles increases, the same strain amplitude stress will increase or decrease. The response of this stress corresponding to the change is called cyclic hardening or cyclic softening. The cycle is enough for several cycles, and some materials will form a stable hysteresis loop.
In strain fatigue, a stress-strain curve is used to describe the cyclic hardening or cyclic softening tendency of the material. For materials with a symmetrical hysteresis loop curve, it is called Massing material.
The figure below shows the σ-ε curve of ZK60 magnesium alloy loaded in the rolling direction and transverse direction. In the lateral direction, the cyclic hardening phenomenon is obvious.
Figure 3. ZK60A magnesium alloy load along the rolling σ-ε curve

The Introduction of Fatigue Test Methods 4

Figure 4. ZK60A magnesium alloy load along the transverse σ-ε curve

The Introduction of Fatigue Test Methods 5

2. Local stress and strain method

For the notched specimens and the stress-concentrated components, the local stress-strain analysis is used. The current research shows that the fatigue life of the members is the local maximum strain and stress, and the concept of stress concentration factor is proposed. It is suitable for calculating the life of material crack formation and the prediction of residual fatigue life of components.
The theory proposed by the local stress method has the Neuber formula (stress concentration formula)
Minner theory (fatigue cumulative damage theory): The fatigue life of a member under constant stress S is N, then the damage through n cycles is:

The Introduction of Fatigue Test Methods 6

If subjected to ni cycles under k constant stress Si, the total damage can be defined as:

The Introduction of Fatigue Test Methods 7

The damage criteria are:

The Introduction of Fatigue Test Methods 8

The application of the local stress method is shown in Figure 5 and Figure 6.
Figure 5. Fatigue life prediction of notched specimens
Figure 6. Crane fatigue life prediction (crane stress and strain test point distribution map)

The Introduction of Fatigue Test Methods 9

The stress concentration point fatigue life is calculated according to the following formula:

The Introduction of Fatigue Test Methods 10

Where: Sf – equivalent stress smooth sample fatigue life
Figure 6 The fatigue life calculation method of the crane is to input the time history map of different test points and input the fatigue life equation of each point, and calculate the residual fatigue life of each point. The default life minimum point is the remaining fatigue life of the device. For cranes, scholars have suggested that the cumulative damage value D of ordinary steel reaches 0.68.

3.energy method

Infrared thermography is a method for predicting fatigue performance based on the energy constant law of material fatigue process. The fatigue thermal imaging method is based on the thermodynamic energy U, kinetic energy K and other forms of energy dissipation in the process of fatigue. The sum of the energy changes E and the thermal change Q absorbed or dissipated by the object should be the work W acting on the object. the same.
Fatigue thermal imaging has the advantages of non-destructive, real-time, non-contact. At the same time, due to the nonlinear relationship between energy dissipation and fatigue load, and the error of temperature dissipation using heat dissipation, it is still not suitable for industrial measurement.
The current research has proposed the following predictive model theory, Luong method, ?Tmax and fatigue life Nf are as follows:

The Introduction of Fatigue Test Methods 11

Where: C1, C2 are constants.
Therefore, the fatigue limit can be predicted by the two-wire method. Based on the heat dissipation, scholars have proposed the following models:

The Introduction of Fatigue Test Methods 12

R-temperature rise slope
The following is a study of the fatigue thermal imaging method by the team of teacher Zhang Hongxia from Taiyuan University of Technology. The fatigue life of AZ31B Mg alloy was quickly predicted by thermal imaging. It is only necessary to test the temperature rise of the first stage of the sample to predict the fatigue limit of the material according to the two-line method. Figure 7, Figure 8, Figure 9, respectively.
Figure 7. Surface temperature of AZ31B magnesium alloy sample with different cycle times in fatigue test

The Introduction of Fatigue Test Methods 13

Figure 8. AZ31B fatigue process sample surface temperature curve

The Introduction of Fatigue Test Methods 14

Figure 9. The variation of temperature with fatigue load

The Introduction of Fatigue Test Methods 15

4. Fracture mechanics method

Linear elastic fracture mechanics is the theoretical basis for studying fatigue crack growth. Fatigue crack propagation can also be quantitatively described by the stress intensity factor K.
Under the fatigue load, the rate of change a of the crack length a with the number of cycles N, da/dN, is the rate of fatigue crack growth, reflecting the speed of crack propagation. For a given crack length a, da/dN increases with increasing cyclic stress amplitude ?σ (the larger ?σ, the larger ?K). Based on this phenomenon, scholars have studied da/dN-?K (crack propagation). The rate-stress intensity increase curve, the curve can be divided into three zones: low rate, medium rate, high rate zone. The Paris formula states that there is a linear relationship between the stable extension of the medium rate:
Empirical formula for the shape of the crack tip:

The Introduction of Fatigue Test Methods 16

Fatigue crack formation and expansion can be unified under the framework of damage mechanics.
The following is a study of the crack growth rate of AZ31B magnesium alloy, and evaluate the stable expansion rate of AZ31B.
Figure 10. Schematic diagram of the fatigue crack tip competition mechanism

The Introduction of Fatigue Test Methods 17

Figure 11. Schematic diagram of three different regions of the stress-strain field at the crack tip

The Introduction of Fatigue Test Methods 18

Figure 12. Schematic diagram of the a-N curve of the fatigue crack tip competition mechanism

The Introduction of Fatigue Test Methods 19

Figure 13. Schematic diagram of da/dN-ΔK curve for fatigue crack tip competition mechanism

The Introduction of Fatigue Test Methods 20

AB segment (medium rate zone):da/dN=4.57×10-7(ΔK)3.25 (7.2<ΔK≤13.5 MPa?m1/2)
BC segment (high rate zone):da/dN=3.16×10-10(ΔK)6.21(13.5<ΔK≤22.1 MPa?m1/2)
??züm:
The four types of methods are different in application. The nominal stress method and the local stress method are suitable for the material and component performance test in the industrial field. The energy method can predict the fatigue life of the material, and the fracture mechanics method successfully unifies the fatigue crack formation and expansion.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

蜜桃国产精品一区二区三区-午夜理论片在线观看有码-91亚洲视频在线免费观看-自拍偷拍区一区二区三区精品区| 亚洲91精品麻豆国产系列在线-丝袜美腿诱惑一区二区视频-日本人妻中文一区二区-男女无遮挡啪啪啪国产| 中国美女欧美熟妇视频-五月爱婷婷丁香六月色-国产特黄特色成年女人毛片免-人妻精品一区二区三区久久| 国产老熟女乱子一区二区-欧美日本中国一区二区-欧美日韩国产午夜精品-青青草视频在线观看入口| 国产精品自拍射精视频-蜜桃视频在线中文字幕-黑人泄欲一区二区三区-国内少妇无套内射精品视频| 亚洲精品国产精品乱码不-亚洲天堂精品自拍偷拍-风骚少妇久久精品在线观看-一区二区在线观看视频在线观看| 久久伊人蜜桃av一区二区-交换享用人妻在线观看-中文字幕国产精品综合-亚洲久悠悠色在线播放| 日韩少妇高潮免费在线观看-亚洲中文字幕乱码在线观看-日本高清一区二区三区高清-亚洲午夜天堂av毛片| 亚洲综合另类精品小说-国产不卡一区二区三区观看评价-亚洲中文字幕有码道一-一个成人永久免费视频| 久久精品熟女亚洲av麻豆-国产精品久久99粉嫩-校园春色另类综合在线视频-久久亚洲精品国产日韩| 国产精品一区久久精品国产-一区二区三区在线日本视频-亚洲欧美天堂精品在线-午夜久久一区二区狠狠干| 国产精品第五页在线观看-亚洲欧美日韩丝袜另类一区-国产懂色av一区二区三区-午夜亚洲欧美日韩在线| 国产91精品一区二区亚洲-国产精品国产三级国产播-久久国产精品免费一区六九堂-五月婷婷六月丁香激情网| 亚洲熟女少妇av麻豆-男人一天堂精品国产乱码-欧美精品高清在线播放-亚洲国产午夜福利精品| 亚洲免费国产午夜视频-女同亚洲一区二区三区精品久久-欧美一级黄片高清免费-久久国产亚洲中文字幕| 四虎在线精品视频免费播放-日韩女同av在线观看-av日韩黄片在线播放-日本人体午夜福利视频| 欧美激情av一区二区三区-美国性感美女抠逼直播视频-亚洲国产精品视频在线播放-日本一高清二区视频久二区| 亚洲综合中文在线视频-在线视频福利精品91-久一在线免费播放视频-精品手机亚洲一区二区三区| 国产精品午夜免费福利-亚洲香蕉视频网在线观看-四虎私人福利妞妞视频-91国产丝袜在线观看| 国产偷拍自拍视频在线观看-丰满欧美熟妇视频在线-亚洲午夜激情在线观看-四虎视频精品免费观看| 日韩精品少妇一二三区免费av-麻豆蜜桃av免费观看-亚洲欧洲日韩一区二区中文字幕-久久九特黄的免费大片| 精品国产高清一区二区三区-亚洲av日韩av二区三区篇-亚洲精品一区高潮喷水-中文字幕人妻色偷偷久久皮| 日韩精品中文字幕第二页-日本午夜剧场在线观看-毛片在线观看免费日韩-日韩午夜理论中文字幕毛片| 少妇无套内谢免费视频-色婷婷性感在线观看视频-国产免费黄色一级大片-国产亚洲精品麻豆一区二区| 蜜桃国产精品一区二区三区-午夜理论片在线观看有码-91亚洲视频在线免费观看-自拍偷拍区一区二区三区精品区| 精品视频在线观看免费一区二区-哪里可以看国产视频一区二区三区-亚洲天堂av在线免费观看-国产大片网站在线观看| 欧洲熟女乱色一区二区三区-人妻中文字幕一区二区在线视频-亚洲码欧洲码一区二区三区四区-日本片在线美女视频骚货| 未满十八禁止免费观看网站-国产夫妻福利在线观看-亚洲国产黄色精品在线-日韩亚洲一卡二卡三卡| 91精品在线播放黑丝-在线观看精品国产自拍-av免费在线播放日韩-日韩av在线精品一区二区三区| 岛国精品一区二区三区-国产一区二区三区观看不卡av-四虎三级在线视频播放-亚洲乱妇熟女爽到高潮| 蜜桃国产精品一区二区三区-午夜理论片在线观看有码-91亚洲视频在线免费观看-自拍偷拍区一区二区三区精品区| 精品视频在线观看免费一区二区-哪里可以看国产视频一区二区三区-亚洲天堂av在线免费观看-国产大片网站在线观看| 午夜福利国产原创精品-久久综合激情日本熟妇-国产熟女50岁一区二区-国产另类视频一区在线| 欧美av黄片在线观看-黄片国产一级片在线观看-国产精品黄色精品黄色大片-一区二区三区国产日本欧美| a在线观看视频在线播放-81精品人妻一区二区三区蜜桃-国产午夜福利片一级做-在线观看亚洲视频一区二区| 欧美日韩精品综合国产-亚洲国产综合中文字幕-精品国产乱码一区二区三区四区-麻豆精品三级国产国语| 精品国产自产在线观看-四虎av一区二区在线观看-91久久精品人妻中文字幕-av网页一区二区三区| 少妇高潮了好爽在线观看男-麻豆国产传媒国产免费-欧美三级黄片在线播放-亚洲一区域二区域三区域四| 久久精品极品盛宴免视-五月综合激情中文字幕-精品中文字幕一区二区精彩-中文字幕熟女日韩人妻| 日本岛国三级黄色录像-日韩久久成人免费电影-中文字幕日韩专区一区二区-国产成人大片在线播放| 亚洲欧洲av一区二区久久-日本丰满熟妇中出在线-欧美一区二区三区人妻少妇-日韩成人av免费在线|