色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Lathe is a classic topic in our machining industry. But do you know the history of the development of lathes? What historical background and coincidences led to their creation? This article may provide you with the answer.

The prototype of lathes

The reason why humans evolved from apes is thanks to our hands. However, hands alone are not enough, so tools are necessary to assist in the process. Our ancestors were clever, and in order to facilitate the use of tools for processing, the earliest prototype of lathes, the wooden lathe, was born about two thousand years ago.

As a prototype, it was still quite rough, as you can see from the picture. When operating it, one would step on a loop below the rope, use the flexibility of the tree branch to rotate the workpiece, and use stone or shells as cutting tools to cut the object along the horizontal bar.

The 4 Interesting Development History of the 4th Generation lathes 1

In the 13th century, the prototype of lathes was also developing. One could not always rely on trees. At this time, the “foot-operated lathe,” also known as the elastic pole lathe, was invented. The user would rotate the crankshaft with a foot pedal, which would drive the flywheel and then the main spindle, causing it to rotate. However, the operating principle was still the same as before, except that metal was used for the cutting tools.

The 4 Interesting Development History of the 4th Generation lathes 2

A Frenchman named Besson in Europe designed a lathe for screw cutting that allowed the cutting tool to slide through the screw, which was achieved by the use of a screw thread. The cutting tool was no longer fixed in one position.

The prototype of the lathe at this stage has been introduced. Although the prototype continued to evolve, the power source still had not departed from the original wooden lathe. The continuous power supply was still a big problem, as even the most skilled humans would still experience fatigue.

Steam engines and lathes

As a steel master, Wilkinson invented the boring machine in 1774, which was the world’s first truly meaningful boring machine.

The 4 Interesting Development History of the 4th Generation lathes 3
The barrel boring machine invented by Wilkinson was originally used to cast munitions

In 1775, Wilkinson used the cannon boring machine to bore the cylinder for Watt’s steam engine, which had numerous defects, to meet the requirements of Watt’s steam engine. Of course, as a businessman, Wilkinson also obtained the exclusive supply rights for the cylinder of Watt’s steam engine.

In order to bore larger cylinders, he also made a waterwheel-driven cylinder boring machine in the same year, which promoted the development of the steam engine. Since then, lathes began to be driven by steam engines through crankshafts. For both lathes and steam engines, they cooperated and promoted their mutual development. An era of industrial revolution reached its peak.

The 4 Interesting Development History of the 4th Generation lathes 4

Lathe during the Industrial Revolution

The name of Maudslay is inseparable from lathes. In 1797, the father of the lathe industry made the first screw-cutting lathe, which had a lead screw and guide bars, and used a sliding tool holder – the Maudslay’s tool holder – and guides to cut threads of different pitches.

The 4 Interesting Development History of the 4th Generation lathes 5

Afterwards, Maudslay continued to improve upon the lathe. In 1800, he created a lathe with a sturdy cast iron bed instead of the triangular iron bar frame, and used an idler gear with a change gear train instead of changing the pitch of the screw to cut different thread pitches. This was the prototype of the modern lathe and had significant importance to the Industrial Revolution in England.

Mozley 1797 lathe

Moving forward to the 19th century, due to the development of various industries, there was a need for different types of lathes. In 1817, Roberts invented the gantry lathe, while Whitney from the United States manufactured the horizontal milling machine. These two types of lathes were deliberately used for different industries’ part manufacturing needs. With the development of the Industrial Revolution, lathes continued to evolve.

The 4 Interesting Development History of the 4th Generation lathes 6

One of the most accomplished mechanical engineers of the 19th century was undoubtedly Henry Maudslay. In 1834, he built a measuring machine that could measure to within one ten-thousandth of an inch. A year later, at the age of 32, he invented the screw-cutting lathe. He also recommended that all lathe manufacturers adopt a standard thread size, which became known as the Maudslay thread and was adopted as a standard by many countries.

The 4 Interesting Development History of the 4th Generation lathes 7

In order to improve the degree of mechanization and automation, in 1845, Henry Maudslay from the United States invented the turret hexagonal lathe.

The 4 Interesting Development History of the 4th Generation lathes 8

In 1873, American Spencer made a single-axis automatic lathe, and soon after he made a three-axis automatic lathe.

The 4 Interesting Development History of the 4th Generation lathes 9

With the development of electric motors, lathes were upgraded from steam power to electric motor drive, marking another epoch-making improvement. We can see that the process from human power to water power, from steam power to electric power, has taken mankind several hundred years.

The 4 Interesting Development History of the 4th Generation lathes 10

If we were to pick out those who have had an impact on all of our lives, we cannot ignore Henry Ford. A historian 100 years from now may conclude that Ford has had the greatest impact on all manufacturing industries worldwide, even to this day, because he pioneered a new method for producing cars.

The 4 Interesting Development History of the 4th Generation lathes 11

Ford once proposed that cars should be “l(fā)ight, sturdy, reliable, and affordable.” To achieve this goal, it was necessary to develop efficient grinding machines. In order to achieve this, the American Norton company used diamonds and corundum to create large and wide grinding wheels with high rigidity and sturdy heavy-duty grinding machines in 1900. The development of grinding machines has brought the technology of mechanical manufacturing into a new stage of precision.

The 4 Interesting Development History of the 4th Generation lathes 12

Improved manufacturing tools also contributed to changes in the manufacturing process itself, from producing one car in 12 hours to producing one car in 1 hour. In October 1908, the first standardized car, the Ford Model T, was driven off the assembly line.

In 1913, Ford revolutionized the entire process of assembling cars. Partially assembled cars hanging from ropes were pulled past workers who each assembled a single component. Soon, the Ford company was producing hundreds of thousands of cars per year, a remarkable achievement at the time, and this was the true birth of the manufacturing assembly line.

Ford and his car made by lathe

CNC Lathe machinine

After the end of the prolonged World War II, the manufacturing industry continued to maintain the pre-war level of development. Operators used manual controls on electric lathes to produce parts according to design drawings. Although this method of production was more efficient than the steam age, human beings are never satisfied.

The key question was how to achieve faster and more efficient production and how to solve some of the manufacturing’s unsolvable technical problems.

 

In the late 1940s, an American engineer named Parsons came up with a method of punching holes on a hard cardboard to represent the geometry of the parts that needed to be machined. He used the card to control the movements of the lathe. Although it was just an idea at first, Parsons presented it to the US Air Force in 1948. The Air Force was very interested because they were looking for an advanced machining method to solve the problem of machining aircraft model shapes.

Since the shape of the model was complex and required high precision, conventional equipment was difficult to adapt. The US Air Force immediately commissioned and sponsored the Massachusetts Institute of Technology to conduct research and develop this lathe controlled by a hard cardboard.

In the laboratory, a model of a numerical control lathe was developed. Finally, in 1952, Massachusetts Institute of Technology (MIT) and the Parsons Corporation collaborated to successfully develop the first demonstration machine, which used a large number of electronic tube components and its control device was even larger than the lathe itself.

Starting in 1960, countries around the world began to develop, produce, and use numerical control lathes. China developed its first numerical control lathe in 1968 at the Beijing No.1 lathe Factory. In 1974, microprocessors were directly used in numerical control lathes, which further promoted the widespread application and rapid development of numerical control lathes.

?lk CNC tak?m tezgahlar? orduya aitti ve askeri ürünlerin imalat?nda kullan?l?yordu.

CNC lathes have also undergone six generations of development. The first three generations belong to the first stage, and the CNC system is mainly composed of hardware connections, called hardware CNC. The last three generations are called computer numerical control, and their functions are mainly completed by software. Starting from 1990, CNC lathes began to adopt universal CNC systems.

 

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

第一亚洲自拍偷拍一区二区-国产精品成人一区二区不卡-中文字幕一区二区三区精品人妻-一区二区三区中文字幕在线播放| 亚洲国产国语对白在线视频-中文字幕中文字字幕码一区二区-毛片av在线免费观看-免费在线观看av毛片| 国产成人高清视频在线观看免费-人妻精品一区二区在线视频-国产成人一区二区三区精品久久-农村肥白老熟妇20p| 国产精品剧情一区在线观看-精品伊人久久大香线蕉-一起草视频在线播放观看-精品少妇人妻av一区二区蜜桃| 久热免费观看视频在线-久久精品免费看国产成人-91极品女神嫩模在线播放-青草视频在线观看久久| 天堂国产精品一区二区三区-亚洲欧美日韩国产精品久久-av毛片黄片在线观看-尤物国产视频在线观看| 日本一区二区中文字幕久久-日本高清一区二区在线-视频在线观看播放免费-精品国产91av一区二区三区| 亚洲一区二区三区免费视频观看-日韩情爱视频在线观看-丝袜美足在线视频国产在线看-日韩美女啪啪不卡视频| 欧美亚洲午夜精品福利-青草在线视频免费观看-亚洲国产精品久久又爽av-久久少妇呻吟视频久久久| 91大神麻豆精品在线-熟女av综合一区二区三区-在线播放亚洲国产一区二区三-亚洲精品日韩在线丰满| 邻居少妇毛多水多太爽了-男人天堂手机在线视频-国产精品国产三级国产专播-韩国女主播福利视频一区二区| 亚洲自拍偷拍另类第一页-麻豆国产午夜在线精品-久久精品一区二区三区综合-日本最近中文字幕免费| 日韩视频精品在线播放-国产91亚洲精品久久-亚欧洲乱码视频在线观看-亚洲国产成人91精品| 日韩一区二区精品在线观看-日韩熟妇中文色在线视频-亚洲午夜精品免费福利-国产精品一区第二页尤自在拍| 国产精品综合亚洲综合-精品人妻码一区二区三区红楼视频-亚洲精品一品区二品区三区-日韩欧美色精品噜噜噜| 中文熟妇人妻又伦精品视频-久久午夜精品人妻一区二区三区-少妇被粗大猛进进出出-日韩av在线成人观看| 成人午夜在线免费播放-97精品在线观看免费-亚洲av一级片在线观看-国产原创自拍看在线视频| 日韩一区二区精品在线观看-日韩熟妇中文色在线视频-亚洲午夜精品免费福利-国产精品一区第二页尤自在拍| 97人妻一区二区精品视频-99久热精品视频在线观看-韩国av福利在线观看-亚洲熟妇自偷自拍另类| 国产欧美日韩精品一区二-久久精品国产精品青草色艺-人妻熟妇视频一区二区不卡-亚洲国产精品第二在线播放| 91国自产区一二三区-日韩高清不卡一区二区三区四区-免费欢看欧美黄色国产-成人无遮挡毛片免费看| 女人毛茸茸的外阴视频-成人激情午夜福利视频-国产精品性色一区二区三区-国产中文字幕欧美激情| 日本大黄高清不卡视频在线-亚洲色图视频在线观看免费-国内精品自拍视频在线观看-av免费在线观看看看| 国色天香精品亚洲精品-日韩精品电影免费观看-亚洲精品中文字幕综合-成人午夜视频福利在线观看| 日韩中文字幕乱码久久-日本一本无道码日韩精品-久久最黄性生活又爽又黄特级片-亚洲av香蕉精品一区二区三区| 伊人久久大香线蕉综合av-久久久中文字幕人妻精品一区二区-青草在线免费观看视频-国产清纯白嫩美女蜜臀av| 少妇被搞高潮在线免费观看-亚洲av成人精品小宵虎南-日韩性生活免费看视频-日韩黄色大片在线播放| 狠狠操夜夜操天天干天天-午夜一级视频在线免费观看-我要看欧美一级黄色录像-91嫩草国产亚洲精品| 亚洲中文字幕99精品-国产精品亚洲一区二区久久-国产精品久久久小黄片-国产不卡福利片在线观看| 男女公园上摸下揉视频-日本精品视频一二区-激情久久综合久久人妻-伊人成人综合在线视频| 日韩美女一区二区三区不卡顿-日本女优搜查官中文字幕-国产精品中文字幕自拍-欧美日韩天天干夜夜操| 麻豆国产av一区二区精品-久久福利社最新av高清精品-丝袜美腿亚洲综合伊人-亚洲欧洲av一区二区三区| 日本一区二区三区四区高清-91久久香蕉国产熟女-久久精品99国产日本精品-国产粉嫩一区二区三区在线观看| 四虎永久精品免费在线-国产一级片内射在线播放-国产精品无套粉嫩白浆在线-色综合综合色综合色综合| 日本激情内射亚洲精品-国产亚洲一区二区三区午夜-国产精品人妻熟女av在线-亚洲av综合亚洲精品| 亚洲视频第一页在线观看-最新中文字幕国产精品-中文人妻熟妇人伦精品熟妇-国产福利91在线视频| 日本女同免费在线观看-在线视频成人国产自拍-日韩av在线观看大全-后入翘臀剧情片在线看| 久久久久亚洲av成人精品-久久精品成人一区二区-国产精品呻吟久久人妻无吗-国产欧洲日本一区二区| 91天美精东果冻麻豆-亚洲自拍伦理在线观看-国产成人一区二区三区日韩精品-在线中文字幕av日韩| 国产精品一区二区蜜桃视频-四十路五十路熟女丰满av-成人av天堂中文在线-亚洲精品成人国产在线| 人妻中文字幕一区二区三区-国产精品丝袜久久亚洲不卡-久久伊人精品色婷婷国产-日韩中精品文字幕在线一区|