色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Powder metallurgy has the advantages of low energy consumption, high material utilization, and high efficiency, which can save time. However, it also has certain limitations, such as high costs for metal powders and molds, limitations on product size and shape, and relatively poor product toughness.

Currently, PM is widely used in the production of hard alloys, porous materials, refractory metals, magnetic materials, and metal ceramics.

The 4 You-should-know Points about Powder Metallurgy 1

The History of Powder Metallurgy

The development of PM can be divided into three stages:

In the early 20th century, the production of tungsten filaments for electric lamps using PM processes was considered a milestone in the development of modern powder metallurgy technology. Subsequently, many refractory metals such as tungsten, tantalum, niobium, etc., could be prepared using PM methods.

The birth of powder metallurgy hard alloys in 1923 was also regarded as a revolution in the mechanical processing industry. In the 1930s, the PM process successfully produced copper-based porous oil-impregnated bearings.

The development then extended to iron-based mechanical parts, which were rapidly applied in various modern manufacturing fields such as automotive, textile, and office equipment. In the mid-20th century, powder metallurgy technology began to integrate with disciplines such as chemistry, materials, and machinery, leading to the development of higher-performance new materials and processes, further promoting the advancement of powder metallurgy.

This integration also resulted in the widespread application of PM technology in fields such as automotive, aerospace, defense industry, energy conservation, and environmental protection.

 

Basic Process of Powder Metallurgy

(1)Preparation of powder

Currently, powder production methods can be broadly classified into two categories: mechanical methods and physicochemical methods.

Mechanical methods involve mechanically crushing the raw materials, with minimal changes in chemical composition.

Physicochemical methods, on the other hand, utilize chemical or physical actions to alter the chemical composition or aggregation state of the raw materials to obtain powders.

The most widely used powder production methods in industrial applications are atomization, reduction, and electrolysis methods. Deposition methods (gas phase or liquid phase) are also important in specific applications.

(2)Powder forming.

Forming is the process of compacting metal powders into a solid block with a certain shape, size, porosity, and strength. Forming can be classified into two categories: conventional compaction and special forming.

Conventional compaction involves placing metal powders or mixtures into a steel mold and applying pressure to the powders using punches. After pressure is released, the compacted part is ejected from the mold.

Special forming methods have emerged as various industrial sectors and scientific technologies have advanced, demanding higher requirements for the properties, dimensions, and shapes of PM materials and products.

Currently, special forming methods include isostatic pressing, continuous forming, injection molding, high-energy forming, and more.

(3)Block sintering

Sintering is the phenomenon or process that occurs when powders or powder compacts are heated under appropriate temperature and atmospheric conditions. Sintering can be divided into monophase sintering and multiphase solid-state sintering.

In monophase sintering, the sintering temperature is lower than the melting point of the metal or alloy used. In multiphase solid-state sintering, the sintering temperature generally falls between the melting points of the low-melting component and the high-melting component.

In addition to conventional sintering, there are also special sintering methods such as activated sintering and hot pressing sintering.

(4)Post processing of products

Depending on the specific performance requirements of the product, additional processing treatments are commonly applied to sintered parts. These treatments include oil impregnation, precision finishing, thread cutting, heat treatment, electroplating, and more.

3pros and cons of powder metallurgy

Advantages of powder metallurgy:

  • Sintering in powder metallurgy is conducted at temperatures below the melting point of the base metal. Therefore, most refractory metals and their compounds can only be manufactured using PM methods.
  • The inherent porosity of powder metallurgy products allows for the preparation of porous materials, bearings, friction materials, etc., by controlling the product density and porosity.
  • Powder metallurgy products can achieve dimensions very close to the final finished size, eliminating the need for extensive machining or requiring minimal machining.
  • High material utilization in PM leads to significant metal savings and reduced production costs.
  • Powder metallurgy products are manufactured using the same mold, ensuring good consistency between workpieces, making it suitable for mass production of parts, especially for products with high machining costs such as gears.
  • PM allows for accurate and uniform material composition by controlling the powder blend. Additionally, sintering is typically conducted in a vacuum or reducing atmosphere, minimizing material contamination or oxidation and enabling the production of high-purity materials.

Limitations of powder metallurgy:

  • Some properties of powder metallurgy components may not be as good as those of forged or certain cast parts, such as ductility and impact resistance.
  • While the dimensional accuracy of PM products is good, it may not be as precise as that achieved by some precision machining processes.
  • The inherent porosity of powder metallurgy parts can affect subsequent processing treatments, particularly in processes like heat treatment and electroplating, where the influence of this characteristic must be considered.
  • The cost of PM molds is high, making it generally unsuitable for small-batch production of products.

The 4 You-should-know Points about Powder Metallurgy 2

Trends in the domestic powder metallurgy industry

With the rapid development of industrialization in China, the demand for high-value-added components is expected to accelerate. Additionally, the formation of global supply chains through globalization presents clear business opportunities for domestic component manufacturers. Therefore, to seize the current opportunities, the powder metallurgy industry should focus on the following four aspects of development:

(1)Iron based powder metallurgy products

Currently, the density of iron-based PM components is around 7.0-7.2 g/cm3. However, a domestic company has achieved a density of 7.6 g/cm3 for iron-based powder metallurgy components by combining traditional powder sintering and forging processes with technological improvements. At this density level, iron-based powder metallurgy can replace most fasteners and some functional components in industries such as machinery and automotive.

Considering the inherent material-saving and high-efficiency characteristics of PMprocesses, the potential value space for such iron-based powder metallurgy components can reach hundreds of billions of yuan.

(2)High precision powder metallurgy products

It serves the industrial structural upgrading of industries such as mechanical manufacturing, aerospace, automotive, and household appliances. This direction is primarily aimed at reducing mechanical weight, energy consumption, and achieving equipment miniaturization and popularization.

For example, the use of injection molded parts eliminates the need for further machining, reducing material consumption, and achieving almost 100% material utilization.

(3)Lightweight and functionalized alloys

In iron-based powders, the addition of alloy powders such as aluminum, magnesium, and rare earth elements enables the achievement of properties such as ultra-thinness and lightweight. This opens up wide-ranging applications in fields closely related to daily life, such as electronic devices and wearable technology.

(4)Electromagnetic alloy

Taking grain-oriented silicon steel as an example, the conductivity principle of silicon steel involves the addition of silicon, which reduces iron losses by decreasing the grain boundaries. In particular, grain-oriented silicon steel has a single large grain oriented in a specific direction.

In comparison, PMThe 4 You-should-know Points about Powder Metallurgy 3 components have the potential to achieve multi-dimensional conductivity (in all directions). Some companies have already made breakthroughs in this technology, and with continuous improvement, it can eventually meet industrial requirements. This technology is expected to find wide applications in areas such as electric motor equipment, automotive, and intelligent control systems for robots.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

九九热在线视频精品一-国产乱码精品一区二区蜜臀-乱妇乱熟女妇熟女网站视频-国产精品午夜视频在线| 午夜男女靠比视频免费-欧美激情影院狂野欧美-国语淫秽一区二区三区四区-国产成人av区一区二区三泡芙| 一区二区三区岛国av毛片-国产男女无遮挡猛进猛-久久精品人妻丝袜乱一区二区三区-国产超级对对碰在线观看| 国产精品蜜桃久久一区二区-久久精品熟女亚洲av麻豆蜜臀-日本一区二区精品色超碰-伊人一区二区三区久久精品| 激情视频在线观看国产-九九热九九色在线观看-亚洲激情午夜av在线-亚洲中文系列在线观看| 水蜜桃精品视频在线观看-日本国产一区二区在线观看-69久久夜色国产精品69-免费观看亚洲成人av| 久久成人av一区二区三区-人妻一区二区三区久久丰满-日韩在线播放视频不卡-亚洲成熟女人一区二区三区| 99久久亚洲综合网精品-久久热福利视频在线观看-日韩av人妻中文字幕-日本一区二区三区视频在线播放| 亚洲视频在线观看第一页-精品偷拍另类欧美日韩-日韩高清在线一区二区三区-久久天天操狠狠操夜夜av| 亚洲国产精品无吗一区二区-伊人久久综合在线观看-欧美日韩在线精品视频二区-国产精品一区二区国产主播| 九九热视频这里免费看-一二三区无线乱码中文在线-粉嫩美女无套内射视频免费播放-国产麻豆一精品一男同| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 国产一区二区在线中文字幕-欧洲中文字幕国产精品-国产精品蜜臀av免费观看四虎-国产一级特黄99久久| 成a级人在线观看网站免费看-久久久精品国产亚洲av水蜜桃-亚洲第一狼人在线观看-黄色欧美精品一区二区三区| 免费手机在线观看bbb视频-国产欧美亚洲精品第1页青草-国产黄a三级三18级三级看三级-宅男视频在线观看一区二区三区| 很黄无遮挡在线免费网站-韩国精品一区福利视频在线播放-爱看色黄色大片儿网站-日韩综合一区二区三区在线观看| 日韩亚洲分类视频在线-熟妇人妻久久中文字幕电-久久麻传媒亚洲av国产-精品丰满熟妇高潮一区| 日本大黄高清不卡视频在线-亚洲色图视频在线观看免费-国内精品自拍视频在线观看-av免费在线观看看看| 亚洲少妇熟女一区二区三区-熟女熟妇少妇妇女乱熟-一区二区三区不卡国产视频-成人精品一区二区三区综合| 久久精品国产普通话对白-丰满人妻中文字幕一区二区-国产日本精品视频在线观看-香港免费毛片在线观看| 91大神麻豆精品在线-熟女av综合一区二区三区-在线播放亚洲国产一区二区三-亚洲精品日韩在线丰满| 精品人妻一区二区三区三区四区-亚洲中文字幕熟女一区二区-91久久精品国产91性色69-国产精品中文字幕中文字幕| 国产精品蜜桃久久一区二区-久久精品熟女亚洲av麻豆蜜臀-日本一区二区精品色超碰-伊人一区二区三区久久精品| 四虎av免费在线播放-久久精品国产熟女亚洲-日韩美女黄色录像播放-久久亚洲日本熟女精品视频| 国产精品一二三四区无线乱码-精品亚洲国产成人精品-国产精品蜜桃一区二区三区-黄片av在线免费播放| 91精品久久综合熟女蜜臀-美女扒开内裤露出p毛-日韩欧美一区二区三区四区在线视频-亚洲成人网日韩精品在线观看| 日韩三级在线视频不卡-国内自拍色第一页第二页-96热久久这里只有精品-日韩精品有码一区二区三区久久久| 开心五月激情综合久久爱-国产精品深夜在线观看-91亚洲国产成人精品一区.-精品亚洲国产成人性色av| 久久精品国产久精国产爱-久久超碰97中文字幕-久热这里只有精品视频一区-日韩av在线免费观看| 免费手机在线观看bbb视频-国产欧美亚洲精品第1页青草-国产黄a三级三18级三级看三级-宅男视频在线观看一区二区三区| 翔田千里的五十路六十路-精品国产综合一区二区三区-久久婷婷色中文字幕免费高清-国产精品伦理视频一区二区| 69精品人妻一区二区三区蜜桃久-国产粉嫩清纯美女在线观看-国产成人高清视频免费-国产日韩精品一区二区三区四区| 欧美高清视频在线高清观看-四虎最新在线播放视频-亚洲中文字幕永久在线全国-亚洲国产av成人精品成人| 丰满女性丰满女性性教视频-国产日韩欧美精品av-日韩区一区二区三区在线观看-四虎国产精品成人免费久久| 国产精品久久中文字幕网-国产亚洲av无色肉丝网站-自拍偷拍亚洲精品偷一-日本久久一区二区三区| 免费人成视频在线播放-成人级a爱看片免费观看-激情偷乱在线视频播放网-激情综合网激情综合网激情| 亚洲视频一区二区久久-亚洲欧美日韩精品中文乱码-亚洲尤物在线视频观看-欧美熟妇视频一区二区三区| 91国自产区一二三区-日韩高清不卡一区二区三区四区-免费欢看欧美黄色国产-成人无遮挡毛片免费看| 亚洲国内精品一区二区在线-亚洲国产成人精品青青草原-精品在线视频免费在线观看视频-亚洲美女激情福利在线| 亚洲av男人的天堂久久精品-人妻中文字幕一区二区视频-国产男女乱淫真视频播放-国内人妻自拍交换在线视频| 欧美日韩精品啪啪91-成年人免费在线观看大片-国产精品麻豆一区二区三区v视界-av中文在线中文亚洲|