色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Nowadays, the demand for orthopedic replacement and rehabilitation equipment is increasing. Medical components include artificial joints and artificial panels, rods and nails used to repair or strengthen body parts damaged by accidents or diseases.

With the general extension of human life expectancy, more and more elderly people suffer from bone and osteoporosis, which leads to the increasing demand for orthopaedic replacement devices. Global weight gain and obesity trends human bones and joints are under pressure from diameter. Gradually, the lifestyle of most people is changing, from lack of physical exercise to more participation in sports, further increasing the demand for posture exchange. With the development of emerging economies, more and more global research institutions predict that the value of the global orthopedic device market will increase to 50 billion euros ($53 billion) by 2024.

1.Competition promotes the development of cutting tools

In the highly competitive orthopedic parts market, the market share of five major suppliers has expanded by about 85%, and the remaining 200 companies compete for the remaining share. Part processing method. Through the application of new materials, implants become stronger, lighter and can last up to 25 years in the body. In this way, orthopedic equipment is a part of the whole consumer lifestyle market, moving towards personalization; Medical device manufacturers are considering how to customize their products to meet patients’ needs for appearance and other alternatives. Product differentiation has become a key competitive advantage. Therefore, machine tool manufacturers seek to develop solutions to enable them to quickly process parts with complex shapes, while tool manufacturers focus on developing tool technology that can provide higher speed and size. Advanced manufacturing technology solutions include 3D printing technology for processing and advanced cooling technology.

2.Typical medical parts

Orthopaedic instruments include hip and knee parts, artificial elbow and fracture joints, incision rehabilitation equipment, spinal plate and various rehabilitation nails, rods and fasteners. The key requirements of these components are strength, reliability, light weight and biocompatibility.

New strategy of milling cutter in orthopedic parts processing 2

3.Machining challenges of milling cutters

For bone and knee implants, the most common workpiece material is cobalt chromium alloy, but the use of titanium is also increasing. Typical cobalt chromium alloys include cocr28mo6, etc., and Ti6Al4V titanium alloy is the most commonly used material.

Both materials are biocompatible and very hard, so they are very suitable for the manufacture of orthopedic parts. However, these same characteristics also increase the difficulty of machining alloys. Cobalt chromium alloy has wear resistance, elasticity and poor performance. This alloy may contain hard abrasive components, which will lead to serious wear of cutting and milling cutters and produce tough and continuous chips. Therefore, it is necessary to use the cutting edge groove type with good chip control performance.

Titanium alloy is light and strong. It will harden and twist during processing. On the central cutting edge and face. The high temperature, large cutting force and high friction in the chip channel will lead to the crescent wear and failure of the milling cutter. The material has a minimum modulus of elasticity, which is advantageous in some implant applications, but the material will rebound from the cutting edge during machining, so it is necessary to pay close attention to the sharpness of the cutting tool.

4.Coolant requirements

Materials used to process orthopaedic implants often produce excessive speed and require the use of coolant. However, the use of traditional coolant usually has great restrictions on preventing part pollution. After processing, the traditional coolant needs to be cleaned, which is a time-consuming and costly process. Coolant itself can cause environmental problems in terms of employee health, safety and handling policies. Another cooling technology uses supercritical carbon dioxide (SCCO2) to dry this supercritical SCCO2 as the medium to transport the dry strong conduit to the cutting area.New strategy of milling cutter in orthopedic parts processing 3

When CO2 is compressed to 74 bar (1070 psi) at 31 C, it will become supercritical when transported to the cutting area. Although it will not produce low-temperature materials such as liquid nitrogen, supercritical CO2 will expand and form dry ice. In this state, it will fill the container like a gas, but the density is similar to that of a liquid. Therefore, the new coolant solution brings higher cooling efficiency and uses existing systems using high-pressure water / oil, micro lubrication (MQL), liquid CO2 and liquid nitrogen.

5.3D printing parts

Another non-traditional manufacturing technology that is becoming more and more common in the production of orthopedic devices is 3D printing, which uses titanium and cobalt chromium alloy powder to produce complex, nearly net formed parts. In the medical industry, selective laser melting (SLM) technology is used to melt powder and manufacture parts layer by layer. This process allows medical device manufacturers to customize parts with special contours and dimensions for patients. From there, a uniform microporous surface can also be produced, thereby accelerating the parts and body. For finish machining, parts produced by 3D printing retain most of the machining characteristics of the metal they use. However, such parts may need postprocessing to reduce the uneven stress generated during the processing. In addition, due to the near net shape and complex contour of the part, part clamping may be a challenge in the later stage of the process.

New strategy of milling cutter in orthopedic parts processing 4

6.Replacement of parts

Total knee arthroplasty usually consists of three basic parts: a contour metal (cobalt chromium alloy or titanium) part called the femoral part, which is connected to the end of the femur (thighbone). This part is fixed to the top of the tibia of the lower leg and consists of a short axis or keel to support the aligned surface with protruding edges. The last one consists of plastic bearing inserts between metal parts to enable the joint to move freely.

Similarly, hip arthroplasty consists of three main parts: a metal femoral stem with a femoral cap or femoral head at the top and inserted into the top of the femur or hip joint. kit. The Neo alinea bearing insert in the knee joint and the plastic cup in the lumbar joint are usually processed from UHMWPE (ultra high molecular weight polyethylene).New strategy of milling cutter in orthopedic parts processing 5

New strategy of milling cutter in orthopedic parts processing 6

7.Combined manufacturing method

For orthopaedic parts, the surface finish of the plastic joint must be excellent to reduce the expected life of the plastic parts, and the plastic parts must be aligned for 20 years at the same time. For example, when the knee is displaced, the femoral prosthesis and tibial bracket must be absolutely smooth to protect the plastic bearing insert from wear.

Therefore, the manufacturing of orthopaedic components usually needs to be ground after milling operation to achieve a sufficiently fine finish. However, grinding is very time-consuming and will affect the overall manufacturing efficiency and output. In addition, the grinding process will also produce high temperature and stress on the base parts, resulting in dimensional errors of parts and affecting the strength and performance of parts.New strategy of milling cutter in orthopedic parts processing 7

In general, advanced cutting machines and high-speed milling strategies can improve the grinding process or replace it in some cases. The purpose of milling is to produce a burr free profile and excellent surface finish, and to achieve specific required surface quality, size and dimensional accuracy. Since the defined surface shape and structure have been realized during milling, the time of post-treatment process (such as polishing (if any)) can be changed alternately. For cutting end mills, the same is true of durable and reliable cutting end mills and maximizing tool life and expectations.

A typical application is to use a ball end mill to process femoral parts made of cast cobalt chromium alloy on a 5-axis milling machine. High speed profiling strategy and high performance end milling cutter eliminate the grinding process. As a result, the machining cycle of each part is 11 minutes, which is 50% shorter than the previous method. The generation of waste parts is eliminated by grinding the hinged surface instead of milling. The integral carbide end mill is made of special cemented carbide materials and hard polished tialsin coating to ensure excellent metal removal rate and smooth cutting effect, so as to obtain excellent surface finish or shortest polishing time.

New strategy of milling cutter in orthopedic parts processing 8

8.Multiple machining operations

The complex contour of orthopedic parts usually requires the use of several special cutting end mills. For example, some types of bone involve seven machining processes: rough machining, bottom rough machining, bottom finish machining, chamfering and T-groove root cutting. These processes can obtain excellent surface quality and reliable tool performance with minimal manual intervention, so as to ensure the best alignment, lowest cost and highest quality.

In the past, when completing various operations, special cutting and milling cutters were needed to achieve each required contour, size and surface finish. Special cutting machines require a lot of design and development time and cost, and due to their reduced size, their crosslinking time may be prolonged and their availability is limited.

The new approach is to develop and use standardized cutting machines that can be produced efficiently in these applications, and these cutting machines must also retain sufficient size for processing other similar parts in the orthopaedic industry.

New strategy of milling cutter in orthopedic parts processing 9 

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

九九热在线精品视频免费-日韩高清免费在线视频-熟女快要高潮了在线观看-亚洲午夜福利视频一级| 欧美精品日韩精品在线-久热传媒在线免费观看视频-亚洲一级天堂作爱av-久久精品国产精品亚洲蜜月| 国内熟妇与亚洲洲熟妇妇-伊人久久亚洲一区二区三区-亚洲av不卡在线短片-午夜国产理论大片高清| 人妻中文字幕一区二区三区-国产精品丝袜久久亚洲不卡-久久伊人精品色婷婷国产-日韩中精品文字幕在线一区| 久久精品国产欧美日韩热-久久综合色一综合色88-特西西日本午夜人体艺术-97中文字幕在线视频| 精品亚洲无线一区人人爽人人澡人人妻-国产欧美一区二区综合日本-亚洲天堂中文字幕君一二三四-九九热视频这里有精品| 岛国精品一区二区三区-国产一区二区三区观看不卡av-四虎三级在线视频播放-亚洲乱妇熟女爽到高潮| 久久国产精品亚洲va麻豆-嫩模大尺度偷拍在线视频-免费三级在线观看自拍-天堂av在线男女av| 99久久亚洲综合精品成人网-国产性感丝袜在线观看-国产一区二区三区激情啪啪啪-久久香蕉综合国产蜜臀av| 日韩人妻一区二区三区免费-日韩午夜精品中文字幕-国产三级精品大乳人妇-一级女性全黄久久生活片免费| 黄片毛片av免费观看-四虎国产精品久久免费地址-精品午夜一区二区三区国产av-亚洲成a人一区二区三区久久| 中文熟妇人妻又伦精品视频-久久午夜精品人妻一区二区三区-少妇被粗大猛进进出出-日韩av在线成人观看| 精品国产人成亚洲区中文久久-欧美日韩夫妻性生活视频-亚洲欧美日韩高清专区一-国产精品无套内射后插| 亚洲高清无吗视频在线播放-国产亚洲最新在线不卡-久久亚洲国产精品成人-二区三区在线免费观看视频| 传媒精品视频在线观看-久久蜜汁成人国产精品-国产精品伦理视频一区三区-丰满少妇特黄一区二区三区| 高清国产av一二三四-少妇激情高潮视频网站-被公么玩弄邻居人妻中文字幕-亚洲免费成人av在线| 亚洲国产国语对白在线视频-中文字幕中文字字幕码一区二区-毛片av在线免费观看-免费在线观看av毛片| 国产素人一区二区久久-欧美精品不卡在线观看-蜜桃精品一区二区在线播放蜜臀-欧美日韩精品在线一区二区三区| 蜜臀一区二区在线观看视频-亚洲一区二区国产精品视频-国内精品国产三级国产a久久-婷婷久久亚洲中文字幕| 最好韩国日本免费高清-蜜桃视频一区二区三区在线观看-国产精品黄色大片在线看-日本高清视频亚洲不卡| 国产午夜精品视频在线观看-亚洲欧洲日本元码高清-亚洲精品视频自拍成人-午夜福利欧美在线观看视频| 国产极品高颜值露脸女主播-国产日韩亚洲欧美综合-成人亚洲天堂av在线-日韩在线观看免费不卡| 久久都是精品久久都是精品-精国精品一区二区成人-亚洲品质自拍在线观看-中文 字幕乱码高清视频| 福利午夜视频在线观看-亚洲国产精品久久av麻豆-人妻被中出忍不住呻吟-国产极品尤物在线精品福利一区| 欧美极品欧美精品欧美激情-人妻av中文字幕高清版-国产传媒麻豆天美在线观看-免费91麻豆精品国产自产自线| 白白色视频国产在线观看-美女高潮无套内谢视频日韩-成人能看的性生活视频大全-中文字字幕在线亚洲乱码| 粉嫩精品一区二区三区在线观-中文国产精品久久久私一本-熟女少妇日韩亚洲av-精品国产一区二区三广区精东| 久久精品国产亚洲av高-国产插菊花综合网亚洲-看亚洲裸体做爰av肉-成人免费观看性生活片| 亚洲国产精品无吗一区二区-伊人久久综合在线观看-欧美日韩在线精品视频二区-国产精品一区二区国产主播| 亚洲五月六月丁香缴情久久-国产精品国产三级国产一区-人妻中文字幕一区二区三区四区-精品在线视频尤物女神| 国产精品亚洲精品日韩精品-狠狠爱婷婷网五月天久久-国产精品激情成色在人-国产农村妇女精品三级一区二区| 亚洲视频一区二区久久-亚洲欧美日韩精品中文乱码-亚洲尤物在线视频观看-欧美熟妇视频一区二区三区| 国产精品国产亚精品不卡-欧美淫淫基地电影网站-亚洲高清精品人妻偷拍-四虎精品永久在线播放| 欧洲激情综合啪啪五月-国产精选三级在线观看-七七久久成人影院网站-男人深夜福利在线观看| 妖精亚洲av成人精品一区二区-精品日韩一区二区三区av-在线精品国精品国产尤物-在线播放国产精品三级网| 大屁股丰满肥臀国产在线-亚洲国产一区二区精品在线观看-久久黄色精品内射胖女人-日韩精品国产综合一区二区| 激情六月综合激情六月-韩国国产日韩在线观看视频-久久精品国产亚洲av高清色-亚洲熟女乱码一区二区三区| 中文字幕一区二区三区日韩精品-久久老熟女一区二区三区福利-久久精品国产自产对白一区-午夜欧美牲交激情网站| 午夜男女靠比视频免费-欧美激情影院狂野欧美-国语淫秽一区二区三区四区-国产成人av区一区二区三泡芙| 精品人伦一区二区三区蜜桃-中文字幕久久人妻熟人妻-中文字幕av乱码在线看-久久精品国产亚洲妇女av| 日韩成人av在线影院-亚洲五月天久操视频在线观看-最新国产AV无码专区亚洲-欧美日韩大香蕉在线视频|