色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Nano-WC-Co carbides, known for their high strength and hardness, represent a promising direction for the development of carbides. Currently, the biggest challenge hindering the advancement of nano-crystalline WC-Co carbides is the difficulty in preparing nano-WC powder.

Typically, nano-WC powders are prepared using gas-phase reaction methods or high-energy ball milling techniques. The most widely used method for preparing WC-Co composite powders is through hydrogen reduction/carbonization of tungsten oxide. Therefore, controlling the microstructure and preparation process of tungsten oxide can yield nano-tungsten powder. However, there is currently a lack of in-depth research on how different carbonization methods affect the carbonization process of nano-tungsten powder. Research in this area holds significant practical value for the production of nano-tungsten carbide powders and the fabrication of nano-crystalline WC-Co carbides.

This study uses ball-milled tungsten oxide as the raw material and prepares nano-tungsten powder by controlling the hydrogen reduction process. Different carbonization methods, namely wet ball milling and dry milling, are employed to mix carbon, resulting in W+C mixed powders with varying morphologies. After carbonization, WC powder is obtained, aiming to enhance the uniformity of the dispersion of tungsten and carbon black particles through suitable carbonization methods and to explore a cost-effective industrial method for preparing homogeneous nano-WC powder.

How is the Properties of Nano-WC Powder Influenced by Carbonization Method? 2

The Importance of Carbon Content in Carbide?Powders

Carbon content is a crucial factor influencing the performance of carbides. Even minor fluctuations in carbon content can lead to changes in the alloy’s phase composition and microstructure, thus affecting its performance. When the carbon content in an alloy is insufficient, decarburized phases, which are brittle and unstable, may form, resulting in reduced strength and increased susceptibility to fracture and chipping during use. Conversely, when carbon content is too high, free graphite may form within the alloy, disrupting the continuity of the matrix and adversely affecting properties such as bending strength, toughness, and wear resistance.

Even fluctuations in carbon content within the normal phase range can significantly impact alloy performance. At the upper limit, strength and toughness are high while hardness and coercivity are low; at the lower limit, the opposite is true. This is because changes in carbon content, while not altering the number of phases, do modify the composition of the bonding phase. The hardness of the bonding phase is determined by tungsten content, which can be controlled by the total carbon in the raw materials during the sintering process. Thus, the overall carbon content of the alloy is vital for the material’s hardness and toughness. Studies of high-lifetime micro-drills and stamping dies have shown that the saturation magnetization of long-lasting alloys is typically controlled within 75% to 80%, indicating that their carbon content is maintained at the lower limit of the normal phase range.

 

Experimental Method

To further improve the uniformity of the powder and reduce particle agglomeration, mechanical milling and classification were used to preprocess WO. The preprocessed powder (MWO?) was then subjected to hydrogen reduction in a tubular furnace at 760°C to obtain nano-W powder. Following this, an appropriate dispersant was added for wet mechanical alloying and carbon mixing. After vacuum drying, the mixture was carbonized in a hydrogen molybdenum wire furnace at 1140°C, followed by crushing to obtain nano-WC powder. Additionally, dry milling was also employed for carbon mixing under the same carbonization conditions for comparative analysis. Scanning electron microscopy (SEM) was used to observe the morphology of WO?, W, and WC powders, while powder properties such as particle size, specific surface area, and total carbon content were measured. Specific surface area and particle size of the nano-W powder were measured using a SA3100 specific surface area analyzer and a particle size analyzer, and the morphology and uniformity of the powder were examined with a QUANTA-200 SEM.

 

Results and Discussion of the Experiment

Morphology and Properties of Nano-WC Powder

Figure 1 shows SEM images of the raw powder and nano-W powder. The results indicate that mechanical milling significantly refines the WO? powder, achieving a particle size of 1.1 μm and a specific surface area of 4.52 m2/g. After mechanical nano-sizing, the morphology of the WO? powder changed significantly, with smooth surfaces and a dense structure consisting of nano-particles. The large agglomerated WO? particles were crushed into finer particles with maximum agglomerates not exceeding 20 μm. Using MWO as a raw material under specific processing conditions, nano-sized W powder (20-30 nm) was produced, exhibiting inherited structural characteristics from its oxide precursor and showing varying degrees of loose agglomeration, with maximum agglomerate sizes not exceeding 20 μm.

Nano-WC

Morphology of W+C Mixture after Carbon Mixing

Figure 2 presents SEM images of the W+C mixtures obtained through different methods. After wet mechanical alloying with an appropriate dispersant, significant changes in the powder morphology were observed: most agglomerated W particles were effectively broken up and dispersed, with carbon black uniformly distributed. In contrast, the dry milling method resulted in noticeable agglomeration of W powder, with non-uniform distribution of carbon black.

 

Morphology and Structure of Nano-WC Powder

Figure 3 shows SEM images of different nano-WC powders. The nano-WC powder obtained through wet alloying with carbon was smaller and more uniform, with a well-defined morphology and minimal agglomeration, containing a total carbon content of 6.10-6.30%, a combined carbon content of 6.06%, and an average particle size of about 85 nm. In contrast, the WC powder produced through dry milling exhibited more tightly bound agglomerates and larger particle sizes, with an average size of approximately 189 nm. This discrepancy is attributed to the insufficient breaking of tungsten powder agglomerates during carbon mixing in the latter method, resulting in poor contact between carbon black and tungsten powder and non-uniform carbon distribution. During high-temperature solid-state reactions, the chemical migration process is lengthy and requires significant chemical driving force, making complete carbonization challenging; high temperatures can also cause tungsten particles within agglomerates to grow larger due to sintering.

How is the Properties of Nano-WC Powder Influenced by Carbonization Method? 3

??züm

1.Using wet mechanical alloying for carbon mixing followed by carbonization at 1140°C, a well-dispersed and uniform nano-WC powder was produced, with a total carbon content of 6.10-6.30% (controllable), a combined carbon content of 6.06%, and an average particle size of approximately 85 nm.

2.The use of wet milling for carbon mixing altered the agglomerated appearance of the nano-tungsten particles, improving the uniformity of the dispersion of W and C powders. This approach facilitates lower carbonization temperatures and results in uniformly sized and chemically stable nano-WC powders.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

久久99精品成人免费毛片-中文字幕日韩精品欧美-免费观看黄片一区视频-国产亚洲蜜臀av在线观看| 亚洲91精品麻豆国产系列在线-丝袜美腿诱惑一区二区视频-日本人妻中文一区二区-男女无遮挡啪啪啪国产| 国产做国产爱免费视频-男人免费视频一区二区在线播放-精品一区二区三区蜜桃麻豆-成年人免费看国产视频| 成人福利一区二区视频在线-亚洲婷婷综合久久一本伊一区-日本高清午夜一区二区三区-日韩欧美黄色激情视频| 九九久久精品国产av-日本高清在线观看一区二区-精品熟女视频一区二区三区-亚洲欧洲成熟熟女妇专区乱| 午夜激情小视频在线观看-日本福利视频免费观看-日本人妻久久精品欧美一区-国产成人自拍小视频在线| 精品少妇人妻av蜜桃-成年人网站在线免费播放不卡-免费黄色片成人国产精品-蜜桃中文字幕在线视频| 亚洲av成人午夜福利-青青草华人在线视频观看-久久99国产亚洲高清-中文字幕一区二区三区乱码人妻| 男女公园上摸下揉视频-日本精品视频一二区-激情久久综合久久人妻-伊人成人综合在线视频| 欧洲熟女乱色一区二区三区-人妻中文字幕一区二区在线视频-亚洲码欧洲码一区二区三区四区-日本片在线美女视频骚货| 日本一区二区三区欧美精品-农村少妇真人毛片视频-亚洲av乱码专区国产乱码-跨年夜爆操极品翘臀日韩| 国产精品美乳在线播放-久久午夜伦鲁鲁片免费-尤物视频免费在线观看-中文在线在线天堂中文| 日本一区二区三区四区黄色-91在线国产经典观看精品-亚洲一区二区三区免费不卡-av免费在线观看蜜臀| 热99在线视频免费观看-日本老男人同性恋黄色.-精品国产一区二区三区四不卡在线-久亚洲一线产区二线产区三线麻豆| 国产福利亚洲精品精彩在线-日韩在线精品视频免费-亚洲成人国产精品av-日本不卡一区二区三区四区视频| 最好韩国日本免费高清-蜜桃视频一区二区三区在线观看-国产精品黄色大片在线看-日本高清视频亚洲不卡| 91精品在线播放黑丝后入-97免费在线播放视频-av网站天堂网国产av-亚洲熟妇乱色一区二区三区| 伊人久久大香线蕉综合av-久久久中文字幕人妻精品一区二区-青草在线免费观看视频-国产清纯白嫩美女蜜臀av| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频| 国产精品成久久久久久三级四虎-亚洲成人av在线高清-国产精品一区二区三区自拍-欧美午夜激情视频网站| 女同在线播放中文字幕-国产成人亚洲精品在线看-日韩有码在线观看视频-蜜桃av噜噜一区二区三区视频| 97资源视频在线观看-青草视频在线免费播放-最新日韩中文字幕在线播放-成人国产av精品麻豆网站| 精品国产成人亚洲午夜福利-午夜福利一区二区91-亚洲中文字幕女优最新网址-亚洲av成人国产精品| 欧美黄色在线观看免费-日本高清精品一卡二卡-日本综合精品一区二区在线-国产精品伦人一久二久三久| 日韩熟女av在线观看-中文字幕人妻丝祙乱一区三区-亚洲国产精品第一区二区三区-欧美制服丝袜一区二区三区| 亚洲av优优优色首页-国产精品国产三级av-国产自拍精品午夜福利-亚洲av高清一区二区三区| 免费人成视频在线播放-成人级a爱看片免费观看-激情偷乱在线视频播放网-激情综合网激情综合网激情| 亚洲精品国产精品乱码不-亚洲天堂精品自拍偷拍-风骚少妇久久精品在线观看-一区二区在线观看视频在线观看| 91精品国产精品国产-国产成人一区二区免av-亚洲av激情在线观看-一区二区三区亚洲精品在线观看| 国产精品中文字幕久久-国产精品一区二区在线免费-韩国午夜三级一区二区-亚洲国产成人精品一区刚刚| 一区二区三区四区蜜桃av-国产av无套内射成人久久-亚洲第一大片一区二区三区三州-国产福利黄色片午夜在线观看| 亚洲天堂av资源在线-四虎永久免费在线观看国产-久久这里只有精品人妻-欧美黄色三级经典精品| 四虎永久在线精品免费青青-久久久久久久 国内精品-国产精品四虎永久免费视频-男人天堂av免费观看| 国产自拍在线视频免费观看-精品午夜福利一区二区三区-日韩av在线免费观看毛片-国产三级黄色片在线观看| 蜜臀视频在线观看一区二区三区-少妇人妻偷人精品系列-天美传媒国产精品果冻-色综合久久综合欧美综合网| 91久久国产亚洲精品-亚洲第一区二区三区女厕偷拍-国产在线精品中文字幕-久久老熟妇精品免费观看| av天堂免费中文在线-91麻豆国产综合精品久久-日韩av在线播放高清-台湾佬自偷自拍情侣在线| 欧美极品欧美精品欧美激情-人妻av中文字幕高清版-国产传媒麻豆天美在线观看-免费91麻豆精品国产自产自线| 日韩欧美国产在91啦-激情偷拍自拍在线观看-一本大道久久香蕉成人网-亚洲精品中文字幕观看| 国产熟女露脸91麻豆-自拍视频在线观看后入-麻豆映画视频在线观看-国产视频男女在线观看| 国产精品内射在线免费看-99久久国产精品一区二区三区-久久国产精品午夜福利-亚洲av精品一区二区三区|