色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

nano carbide are a hot topic being researched by all material companies involved in cemented carbide. The smaller the grain size of WC in carbide, and the shorter the mean free path of the bonding phase Co, the higher the hardness and strength of the carbide.

When the grain size of WC is reduced to around 100 nm, there will be a significant breakthrough in its hardness and strength. Stronger and harder ultrafine or nano carbide cutting tools are needed for the processing of difficult-to-machine metal materials such as high-temperature carbide in aviation materials, drilling of printed circuit boards in the electronics industry, processing of wood and composite flooring, needles for dot matrix printers, precision cutting of glass, and cutting of textiles.

In this article, we briefly introduce the synthesis and densification of nano carbide.

What’s New?about?the Study?of Nano Carbide Since 2000? 2

Synthesis of nano carbide powder

Due to the inevitable growth of grain during densification, in order to produce carbide with nano grains, it is necessary to first synthesize nano carbide powders with finer grains. The main methods currently used include the following:

Mechanical ball milling method to get nano carbide

Mechanical carbide is a method of synthesizing materials at low temperature using high-energy mechanical driving force. High-energy ball milling is commonly used as the mechanical driving force. Currently, research on the synthesis of nano carbide powders by mechanical alloying mainly includes two aspects:

Using mechanical mixing method to synthesize nano WC powder by W and C, some scholars mixed W, C, and Co for 100 hours to synthesize composite powder of 11.3 nm WC-Co. Another method is to prepare nano-sized WC using chemical mechanical mixing method. This method mixes WO and Mg with C powder in a ball mill under N or H-Ar protective atmosphere, and explosive reduction reaction occurs to generate W and MgO. Then, W undergoes diffusion reaction with C to generate WC and WC. The grain size is about 4-20 nm.

WC and Co powders are mixed and then finely crushed into nano-composites using high-energy ball milling. Chinese scholars used this method to obtain an average WC grain size of 10 nm by ball milling WC-10%Co for 40 hours, with WC particles separated and covered by Co. German scientists used the same method to ball mill at a speed of 55r/min for 300 hours, obtaining an average WC grain size of 7 nm.

The method of synthesizing nano carbide powder using mechanical mixing is simple and efficient, and the powder produced has small grain size. However, it often causes powder contamination due to friction with the container and balls.

Spray Conversion Method

A spray conversion method has been developed by researchers at New Jersey University in the United States to synthesize nano WC-Co composite powder. This chemical method uses ammonium metatungstate (CH4)6(H2W12O40)·4H2O and cobalt chloride CoCl2nH2O aqueous solution or Co(en)3WO4 and H2WO4 aqueous solution, followed by spray drying, fluidized bed reduction, and carbide reaction to generate uniform 20-50 nm grain size powder.

Carburizing Reduction Method

?US scholars have also reported a method using polyacrylonitrile as an in situ carbon source without requiring gas-phase carburation. Tungstic acid and cobalt salts are dissolved in a polyacrylonitrile solution, which is then moved to an atmosphere furnace at 800-900°C and directly reduced into WC-Co powder using a 90%Ar-10% H2 mixed gas. The obtained powder has a grain size of about 50-80 nm.

Co-Precipitation Method

This method uses sodium tungstate or ammonium tungstate (CH4)6(H2W12O40) and cobalt acetate co-precipitation to obtain WC-Co powder precursor containing H2Co2W11O40 solid salt. Then, through the H-reduction reaction and carbide reaction, 50 nm WC-Co powder is produced. However, this method is only suitable for powder with a W/Co atomic ratio close to 5.5. If (NH4)(H12W12O42) and cobalt hydroxide are co-precipitated, the W/Co atomic ratio can be changed, and a wider range of composite powders can be obtained.

 

Sintering of nano carbide

Due to the large proportion of surface and interface in nano particles, the sintering behavior of nanocrystalline WC-Co carbide is different from that of ordinary grain-sized WC-Co carbide due to the influence of small size effect, surface and interface effects during sintering.

Densification temperature

The sintering of ordinary carbides usually occurs above the eutectic temperature of WC-Co, which is 1320℃ and is called liquid-phase sintering. However, the starting temperature of densification is lower than the eutectic temperature, usually around 1280℃, so it is also called solid-phase sintering stage.

As for the composite WC-Co powders with ultrafine grains and nanoscale structures, their densification temperature is greatly reduced. For example, 0.4 μm WC with grain growth inhibitor CrC, VC, TaC added can significantly reduce the eutectic temperature of carbide, and the starting temperature of densification is between 770-850℃. The starting temperature of densification for WC-15Co with grain size of 30 nm is 600℃, and the maximum densification is achieved at 1200℃. The shrinkage starting temperature of 30 nm WC-Co powder synthesized by spray conversion method is 580℃.

From the above content, we can see that the nano carbide powder?synthesized by ball milling method has higher defect density and smaller nano?particles, and its solid-phase sintering temperature is significantly lower than that of nano carbide powder?synthesized by spray conversion method.

Grain growth of nano carbide and ordinary carbide

The smaller the particle size radius, the greater the sintering bonding strength. The sintering bonding strength of nano WC-Co powder is tens or even hundreds of times that of ordinary? carbide. Therefore, the trend of grain growth of WC-Co powder is significant.

Firstly, the influence of sintering time. It was found that the grain size had grown in the first 5 minutes of sintering when studying the densification of nano?WC-Co powder. Secondly, the influence of sintering temperature, the higher the sintering temperature, the more severe the grain growth, as shown in figure 1. In addition, the original size of the powder strongly affects the sintering grain size. As shown in the following figure, within the range of particle size less than 0.2μm, the smaller the original powder, the larger the grain size after sintering at a certain temperature and time.

nanocarbide

What’s New?about?the Study?of Nano Carbide Since 2000? 3

Thus, suppressing the growth of grains during the sintering process is the most critical step in obtaining nano carbide. On the one hand, we can add grain growth inhibitors such as carbides like VC, Cr3C2, TaC, NbC to affect the WC/Co interface energy and reduce the solubility of WC in the Co liquid phase, thus inhibiting the growth of WC grains. On the other hand, controlling grain growth can be achieved by controlling the sintering process or researching new sintering methods. The hot isostatic pressing (HIP) process can rapidly densify the material and reduce the degree of grain growth. In addition, microwave sintering, pulse discharge sintering, and plasma discharge sintering are very promising sintering methods for nano carbide. They can all efficiently heat the material to achieve densification of the hard carbide?grains and reduce grain growth.

Summary and outlook

the main problem currently faced in nano carbide?is the growth of grains during sintering. Although there are reports of nano carbide?products, their grain sizes are rarely around or less than 100nm. Therefore, we need to use more advanced sintering methods, such as microwave sintering, to accurately control the process parameters such as temperature, time, and pressure to obtain higher performance nano carbide.

 

 

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

国产精品久久三级精品-国产一级一片内射免费播放-一区二区三区国产精品麻豆-国产精品情侣自拍av| 欧美日本国产一区二区三区-亚洲精品成人午夜在线观看-国产精品一二三在线看-国产成人传媒在线播放| 国产精品一区成人精品果冻传媒-日韩精品一区二区三区不长视频-欧美日韩不卡在线视频-99久久热视频在线观看| 精品人妻一区二区三区免费-亚洲国产精品久久一区二区-国内久久偷拍视频免费-蜜桃视频在线观看网址| 邻居少妇毛多水多太爽了-男人天堂手机在线视频-国产精品国产三级国产专播-韩国女主播福利视频一区二区| 少妇无套内谢免费视频-色婷婷性感在线观看视频-国产免费黄色一级大片-国产亚洲精品麻豆一区二区| 亚洲一级特黄大片做受-国产91喷潮在线观看-日本不卡一区二区三区四区-在线观看高清视频一区二区三区| 亚洲综合另类精品小说-国产不卡一区二区三区观看评价-亚洲中文字幕有码道一-一个成人永久免费视频| 99在线精品偷拍视频-国产精品粉嫩在线播放-国产精品极品在线91-中文字幕有码在线亚洲| 四虎在线精品视频免费播放-日韩女同av在线观看-av日韩黄片在线播放-日本人体午夜福利视频| 欧美极品欧美精品欧美激情-人妻av中文字幕高清版-国产传媒麻豆天美在线观看-免费91麻豆精品国产自产自线| 四虎在线观看永久免费-久久精品熟女亚洲av香蕉-av国内精品久久久久影院三级-亚洲国产一区二区三区av| 日本一区二区三区欧美精品-农村少妇真人毛片视频-亚洲av乱码专区国产乱码-跨年夜爆操极品翘臀日韩| 国产午夜视频在线观看720p-成人深夜福利av在线-一区二区日韩精品教师学生-亚洲一区二区三区美臀在线播放| 亚洲精品色国语对白在线-黄片毛片av在线免费观看-久久精品有码av天堂-日韩一区二区三区高清视频| 国内外成人综合免费视频-久久国产精品99久久蜜臀-大三美女口爆吞精视频-亚洲国产一区二区精品性色| 久久精品国产欧美日韩热-久久综合色一综合色88-特西西日本午夜人体艺术-97中文字幕在线视频| 尤物国产精品福利在线网-中日韩一二三级黄色永久视频-加勒比av免费在线播放-91欧美精品一区二区三区| 国产亚洲精品首页在线播放-中文字幕国产av中文字幕-日本免费午夜福利视频-亚洲伦理一区二区三区四区| 日韩精品中文字幕免费人妻-欧美精品在线一区二区三区-女人张开腿让男人捅爽-99久久中出中文字幕| 无套内射在线免费观看-亚洲日本va中文字幕久-日韩免费人妻av一区二区三区-热久久国产最新地址获取| 日韩少妇黄色在线观看-国产精品视频不卡一区二区-国产成+人+亚洲+欧美+综合-欧美日韩亚洲大陆国产| 国产精品视频午夜福利-一本大道久久综合一区-成年深夜福利在线观看-国产传媒免费在线视频| 国产精品一线天粉嫩av-亚洲视频在线观看一区二区三-深夜男人福利在线观看-中文字幕国产精品第一页| 中文字幕乱码亚洲精品-亚洲伊人久久大香线蕉-麻豆视传媒视频短免费网站-极品美女被后入干出水视频| 亚洲激情文学国产激情-一本色道久久综合亚洲精品高-国产精品高清在线播放-九九热视频在线观看精品| 国产精品人成在线播放蜜臀-老司机午夜福利视频在线-亚洲激情av免费观看-国产情侣91在线观看| a在线观看视频在线播放-81精品人妻一区二区三区蜜桃-国产午夜福利片一级做-在线观看亚洲视频一区二区| 97资源视频在线观看-青草视频在线免费播放-最新日韩中文字幕在线播放-成人国产av精品麻豆网站| 青青草视频成人在线公开-激情中文字幕一区二区三区-亚洲国产精品综合久久网各-日本中文字幕有码高清| 欧美日韩你懂的在线观看-国产欧美日韩亚洲一区二区-国产无遮挡裸体免费久久-亚洲国内精品久久久久久| 青青草原av青青草原-美日韩精品一区二区三区-中文字幕日本乱码在线-久久热久久热在线视频| 91天美精东果冻麻豆-亚洲自拍伦理在线观看-国产成人一区二区三区日韩精品-在线中文字幕av日韩| 日韩少妇黄色在线观看-国产精品视频不卡一区二区-国产成+人+亚洲+欧美+综合-欧美日韩亚洲大陆国产| 国产成人高清视频在线观看免费-人妻精品一区二区在线视频-国产成人一区二区三区精品久久-农村肥白老熟妇20p| 免费国产精品黄色一区二区-日本熟女五十路六十路熟女-国产日韩欧美另类在线综合-亚洲一区二区中文字幕无线乱码| 亚洲区一区二区三区四区-精品亚洲国产成人av-国产美腿丝袜诱惑在线观看-美女抠逼视频免费网站| 亚洲成人av综合在线-日韩精品久久久中文字幕人妻-国产精品无套白嫩剧情-五月婷婷久久激情综合| 久久国产国内精品国语对白-欧美精品欧美极品欧美激情-日韩剧情电影在线播放-97在线免费精品视频| 极品国产粉嫩18尤物在线播放-中文字幕av人妻在线-国产一区二区三区乱码在线-最新亚洲av日韩av| 国产精品精品久久99-久久羞羞色院精品全部免费-日韩中文粉嫩一区二区三区-外国黄色三级视频网站|