色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

from raw material to final product

Tungsten carbide, commonly referred to as “carbide”, is a common material in shops. This tungsten and carbon compound has completely changed the world of metal cutting in the past few decades, increasing speed and feed rate and prolonging tool life. Tungsten carbide was first studied as a tool material in 1925. Later, Ge set up a special department to produce tungsten carbide cutting tools. In the late 1930s, Philip M. McKenna, the founder of Kennametal, found that adding titanium compounds to the mixture could make tools work better at higher speeds. This began to move towards today’s lightning cutting speed.

“Cemented carbide”, the materials constituting tools and blades, are actually tungsten carbide particles along with other materials, which are cemented together with metal cobalt as binder.

Beginning in the ground

There are several tungsten ores that can be mined, refined into tungsten or made into tungsten carbide. Wolframite is the most famous. The ore is crushed, heated and chemically treated into tungsten oxide.

Then, the fine tungsten oxide is carburized into tungsten carbide. In one method, tungsten oxide is mixed with graphite (carbon). Heating the mixture to 1200 ? C(2200 ? F) Above, a chemical reaction occurs to remove oxygen from the oxide and combine carbon with tungsten to form tungsten carbide.

Grain size defines properties

The size of carbide particles determines the mechanical properties of the final product. The particle size will depend on the size of tungsten oxide particles and the time and temperature of treating the oxide / carbon mixture.

Tungsten carbide particles are a small fraction the size of a grain of sand. They can range in size from half a micron to 10 microns. A series of sieves sort out different particle sizes: less than 1 micron, 1.5 micron, etc.

At this point, tungsten carbide is ready to be mixed into “grade powder”. In the tungsten carbide industry, people speak of grade rather than alloy, but they mean the same.

Tungsten carbide enters a mixing vessel together with other components of this grade. Powdered cobalt metal will act as a “glue” to bond the materials together. Other materials such as titanium carbide, tantalum carbide and niobium carbide are added to improve the properties of the material during cutting. Without these additives, when cutting ferrous materials, tungsten carbide tools may react chemically between the tool and workpiece debris, leaving pits in the tool, especially in high-speed cutting.

Mix it up

How to Making Tungsten Carbide Cutting Tools 2

All these ingredients are blended with a liquid such as alcohol or hexane and placed in a mixing vessel, often a rotating drum called a ball mill. In addition to the grade ingredients, cemented balls 1/4″ to 5/8″ in diameter are added, to help the process of adhering the cobalt to the carbide grains. A ball mill may be as small as five inches in diameter by five inches long, or as large as a 55-gallon drum.

When the mixing is complete, the liquid must be removed. This typically happens in a spray dryer, which looks like a stainless steel silo. An inert drying gas, nitrogen or argon, is blown from the bottom up. When all the liquid is removed, the remaining dry material is “grade powder,” which looks like sand.

For cutter inserts, the grade powder goes into insert shaped molds specially designed to allow for the shrinkage that will happen later on in the process. The powder is compressed into the molds, in a process similar to how pharmaceutical tablets are formed.

sinterleme

The powder compacts are heated to a certain temperature (sintering temperature) and to maintain a certain time, then cool down, to obtain the required properties of materials, this process is called sintering. In the process of sintering, the bonding between particles is realized by heating by means of atomic migration. When the particles are bonded, the strength of the sintered body increases, and in most cases the density increases.

After the inserts are removed from the furnace and cooled, they are dense and hard. After a quality control check, the inserts are usually ground or honed to achieve the correct dimensions and cutting edge. Honing to a radius of 0.001″ is typical, though some parts receive a cutting-edge radius of half a thousandth or as large as 0.002″, and some are left “dead sharp,” as sintered.

Some types and designs of inserts come out of the sintering furnace in their final shape and in-spec, with the correct edge, and don’t need grinding or other operations.

The process for manufacturing blanks for solid carbide tools is very similar. The grade powder is pressed to shape and then sintered. The blank or stock may be ground to size afterward before shipping to the customer, who will form it by grinding or perhaps EDM.

Inserts bound for most non-ferrous applications may be ready to package and ship at this point. Those destined for cutting ferrous metals, high temperature alloys or titanium, will need to be coated.

coatings drop the scene

To prolong tool life under challenging cutting conditions, many types and combinations of coatings have been developed. They can be applied in two ways: by chemical vapor deposition (CVD) or physical vapor deposition (PVD). Both types are applied in furnaces.

Chemical vapor deposition

For CVD, the coating is usually 5-20 microns thick. Milling and drilling blades typically achieve a hardness of 5 – 8 microns because these operations require better surface finish and more impact, so greater edge toughness is required. For turning applications, the coating is often in the range of 8-20 microns. When cornering, heat and wear are often more worrying.

Most CVD coatings consist of multiple layers, usually three layers.

Each company has its own coating “formula”. This is a typical scheme, which consists of three layers.

? a layer of titanium carbide with hardness and wear resistance

? a layer of alumina, which maintains hardness at high temperature and has very stable chemical properties

? a layer of titanium nitride to prevent metal accumulation caused by workpiece fragments welded to the tool. This coating is golden and edge wear is easily observed. In order to apply CVD coating, the parts are placed on pallets and sealed in the furnace. The furnace was evacuated.

Physical vapor deposition

PVD coating machine
PVD coating machine

PVD coating is usually about 2-4 microns thick. Different manufacturers use different layers. These PVD coatings are very suitable for cutting high temperature, nickel based, cobalt based or titanium based materials, and sometimes steel and stainless steel.

Titanium carbonitride, titanium nitride and titanium aluminum nitride are widely used as PVD coatings. The latter is the hardest PVD coating with the highest chemical stability.

The inserts are mounted on the frame so that they are separated from each other. Each rack rotates and the entire rack assembly rotates in the furnace so that each surface of the insert is exposed to the deposition process. The stove was emptied.

A strong negative charge is applied to the plug-in. Install a piece of titanium or titanium and aluminum on the wall or floor of the furnace. Metals evaporate through an arc or electron beam, releasing positively charged metal ions. These ions are attracted by negatively charged inserts. Nitrogen and methane are added appropriately to obtain different types of coatings.

After the insert is removed from the furnace, it can be ground again or packaged and shipped directly.

By continuously improving the design of tungsten carbide tools and developing better and better coating technology, tool manufacturers are coping with the pressure of increasing feed rate and speed, as well as the need to prolong tool life and reduce cost.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

人人澡人人妻人人干-亚洲中国麻豆美女av-日本淫妇一区二区三区-美女午夜福利偷偷要网站| 黑人精品视频一区二区三区-在线播放免费av大片-在线免费观看日韩精品-日本av在线观看一区二区三区| 蜜臀av午夜精品福利-日韩精品av在线一区二区-丰满熟女人妻一区二区三区-懂色日韩欧美国产亚洲| 能看免费欧美一级黄片-男女视频网站免费精品播放-日本高清在线一区二区三区-熟女少妇免费视频网站观看| 亚洲手机在线视频亚洲毛-欧美91精品国产自产在线-国产一区二区中文字幕在线视频-国产av91在线播放| 日本一区二区三区三级视频-亚洲国产精品一区二区久-蜜桃视频网站免费观看-在线视频中文字幕一区二区| 十八禁黄网站免费观看在线-欧美日韩精品久久久免-黄色av免费在线观看网站-国产在线高清一区二区三区av| 日本一区二区三区在线视频-国产午夜性生活免费视频-亚洲老熟妇av熟妇在线-久久热这里只有精品国产| 欧美av黄片在线观看-黄片国产一级片在线观看-国产精品黄色精品黄色大片-一区二区三区国产日本欧美| 蜜臀av午夜精品福利-日韩精品av在线一区二区-丰满熟女人妻一区二区三区-懂色日韩欧美国产亚洲| 色哟哟中文字幕在线播放-人人妻人人澡人人狠人人爽-国产午夜福利精品一区二区三区-性生活在线免费视频观看| 亚洲精品一区二区三区麻豆-国产精品小视频在线看-亚洲国产成人av第一二三区-国产不卡一区二区三区免费视频人| 国产精品一区二区三区四区-日本毛茸茸的丰满熟妇-中文字幕久久中文字幕久久-国产成人三级一区二区在线观看| 国内一级一片内射免费视频观-最新国产在线视频在线-免费在线观看国产特级片-国产午夜免费观看在线视频| 四虎在线观看视频官网-国产免费一区二区不卡-色老99久久九九爱精品-巨乳人妻在线中文字幕| 国产在线一区二区三区视频-国产一区二区三区成人18禁-国产精品自偷一区在线观看-熟女人妻片濑仁美在线| 九九久久只有精品视频-精品女厕偷拍一区二区三区-欧美超乱碰精品综合在线-av中文字幕少妇人妻| 亚洲一区二区三区久久av-国语精品视频自产自拍-99久久精品美女高潮喷水十八-55夜色66夜色亚洲精品视频| 成人国产精品中文字幕-国产馆在线精品极品麻豆-国产极品视频一区二区三区-国产一区二区三区无遮挡| 九九热在线免费视频播放-久久综合九色综合久久久-国产粉嫩小仙女裸体区一区二-中文字幕巨乳人妻在线| 人妻体内射精一区二区三区小视频-国产精品久久久久人人爽-日韩三级黄色一区二区三区-亚洲伊人色综合网收藏| 国产福利亚洲精品精彩在线-日韩在线精品视频免费-亚洲成人国产精品av-日本不卡一区二区三区四区视频| 未满十八禁止免费观看网站-国产夫妻福利在线观看-亚洲国产黄色精品在线-日韩亚洲一卡二卡三卡| 亚洲中文字幕中出在线-美女口爆吞精在线播放-亚洲欧美清纯唯美另类-国产一区二区三区免费观看不卡| 久热视频在线免费观看-亚洲一区二区日韩综合久久-免费观看在线观看青青草视频-精品一区二区亚洲一区二区血炼| 91老熟女老女人国产老太-av在线亚洲av男人的天堂-国产精品久久久区三区天天噜-能看不卡视频网站在线| 国产 av 一区二区三区-日韩黄色三级三级三级-久久精品视频这里只有精品-日韩精品中文字幕亚洲| 色男人天堂综合久久av-蜜桃精品一区二区三区蜜桃臀-国产粉嫩高中生第一次不戴套-成人激情自拍视频在线观看| 久久中文字幕人妻淑女-日韩欧美亚洲一中文字幕-日本免费一区二区三区视频-亚洲精品乱码免费精品乱码| 国产精品日本一区二区不卡视频-尤物在线视频免费观看-中文字幕精品高清中国-最新精品国产自偷在自线| 91亚洲精品免费在线观看-加勒比国产精品综合久久-91九色精品丝袜久久人妻-正常人的性生活一个月几次| 久热这里只有精品视频66-国产资源精品中文字幕-亚洲免费视频一区二区三区四区-亚洲国产特一特二区精品分布| 亚洲无吗视频在线观看-成人免费在线视频平台-国产午夜视频看看果冻-国产黄色片国产黄色片| 人妻少妇av免费久久蜜臀-欧美国产日韩在线一区二区-美女被啪啪到深处好爽无套-日韩av一区在线资源播放| 日韩精品中文字幕人妻中出-日韩av在线免费播放-国产一级特黄一区二区三区-日本一区二区亚洲一区二区| 亚洲区一区二区三区四区-精品亚洲国产成人av-国产美腿丝袜诱惑在线观看-美女抠逼视频免费网站| 熟女人妻中文字幕在线视频-91久久成人精品探花-国产精品黄色一区二区三区-99精品国产99久久久久97| 起碰在线视频免费播放-人妻在线视频一区二区三区-日韩伦理在线一区二区三区-久久女厕视频偷拍一区二区| 午夜福利国产在线播放-中文字幕日产乱码久久正宗-亚洲精品成人久久69-99精品国产免费久久| 亚洲综合另类精品小说-国产不卡一区二区三区观看评价-亚洲中文字幕有码道一-一个成人永久免费视频| 日韩亚洲高清在线一区二区三区-国产无遮挡爆操美女老板-伊人久久亚洲精品国产av-国产亚洲综合成人在线|