色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Bir torna tak?m? tala? k?r?c?s?n? tasarlarken ilk dikkate al?nan husus tala? k?v?rma ve k?rma ?zellikleri olmal?d?r. Bu iki unsur a?a??da ayr?nt?l? olarak ele al?nacakt?r.

The direction of chip flow and the chip flow angle φλ

The direction of chip flow has a significant impact on chip curling and breaking, and the angle between the flow direction and the main cutting edge plane is called the chip flow angle φλ, as shown in Figure 1. In orthogonal free cutting, chips flow out in the vertical direction to the cutting edge, and the chip flow angle φλ is approximately 0. In oblique free cutting (such as with inclined wide-edge planing tools), the chip flow angle is approximately equal to the rake angle (φλ = λse). However, for general cutting, it is influenced not only by the primary cutting edge but also by the secondary cutting edge. In summary, the principle is that chips should flow out in the direction that minimizes energy consumption. If the direction of the chip breaker groove does not align with the chip flow direction, it can affect its chip-breaking effectiveness.

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 2

Figure 1 The effect of the chip flow angle (φλ) on chip curling

Chip curling

During the chip flow process, chips curl, and the direction and curling of the chips determine their shape. When chips only curl upward along the thickness direction of the chip, the curling axis of the chip is parallel to the chip’s bottom surface, and the angle between them is θ = 0°. Different chip shapes are formed with different chip flow angles φλ.

As shown in Figure 1, when φλ = 0°, and the chips do not have lateral flow, it results in flat spiral chips (coil-like chips). When φλ ≠ 0°, the chips curl upward and also move along their curling axis, creating a helical motion of the chips. When φλ is relatively large, if the distance the chip moves while making one revolution is greater than or equal to the nominal cutting layer width, it forms tubular spiral chips. If φλ is relatively small, and the chip moves a smaller distance along the curling axis, it is more likely to form conical spiral chips (tower-shaped chips).

When the chips only have lateral (sideways) curling and no upward curling, the curling axis of the chips is perpendicular to the chip’s bottom surface (θ = 90°), forming washer-like ring-shaped spiral chips.

When the chips curl both upward and sideways, and the chip flow angle φλ is not zero, it can create ring-shaped or conical spiral chips, depending on the values of various parameters. The curvature radius rDX of the chips curling upward is related to the parameters of the chip breaker groove. Taking a straight-line circular arc chip breaker groove as an example, when the chip’s bottom surface contacts the shoulder of the chip breaker groove, as shown in Figure 2. The average curvature radius rDX at which the chips curl within the chip breaker groove can be calculated based on geometric relationships:

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 3

In the formula,

Wn – Width of the chip breaker groove (mm);

hn – Depth of the chip breaker groove (mm);

hDX – Thickness of the chip (mm);

lf – Length of chip in contact with the previous surface, when cutting steel, lf ≈ hDX (mm).

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 4

Figure 2 The influence of the chip groove on chip curling

 

Chip Groove Shapes and Parameters

Chip Groove Shape

The chip breaker groove of a welding lathe tool is ground when sharpening the tool, while for indexable lathe tools, it is directly pressed and formed during the production of the blade.

Classification of Chip Groove Shapes Based on the Section

Linear-circular chip breaker groove: This type of cross-section consists of both straight and general arcs. The front part of the lathe tool is formed by a plane section close to the cutting edge, and the basic parameters of the chip breaker groove are as follows: width Wn = 10.7)Wn, wedge angle βo ≤ 40, negative rake width bn ≤ fo. Rn and Wn are the main factors affecting chip formation, where the size of Rn directly influences the curvature radius of the chip.

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 5

Figure 3 – Basic Section of Chip Groove

Polygonal chip breaker groove: It is formed by the intersection of two straight sections. The groove bottom angle θ replaces the role of the above-mentioned arc radius Rn. When a small value is chosen, the chip curvature radius is small. If θ is too small, it can cause the chip to block in the groove, leading to chip packing. If θ is too large, it can increase the chip curvature radius and make it less likely to break. The groove angle is generally recommended to be between 110° and 120°.

Full arc-shaped chip breaker groove: Under the same conditions of front angle and groove width, a full arc-shaped chip breaker groove has higher cutting edge strength. Therefore, it is suitable for a larger front angle and heavy-duty lathe tools. The following approximate relationship exists between the groove width Wn, arc radius Rn, and front angle γo:

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 6

Classification According to Chip Groove Inclination Angle

The inclination angle of the chip breaker groove shape is the angle at which the chip breaker groove is inclined relative to the main cutting edge. There are three forms, as shown in Figure 4.

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 7

Figure 4 – Common Chip Groove Inclination Angles

A-shape: This groove shape features an open semi-groove with equal width and depth in the front and rear, known as parallel-style. This groove shape can achieve good chip-breaking effects over a wide range of feed variations. However, for tool inserts with a certain groove width, their chip-breaking range is relatively narrow, and the groove width should be determined based on the feed rate.

Y-shape: Its characteristic is an open semi-groove with a wider front and narrower rear, also known as outer inclined style. In this groove shape, point A has a high cutting speed, a narrow groove width, and shallow groove depth. Chips tend to curl at this point, with a small curling radius. At point B, the chip curling is slow, the groove is deep, and the groove bottom forms a negative rake angle, making it easier for the chips to contact the workpiece surface and form arc-shaped chips. This groove shape is suitable for moderate back feed rates (ap) where chip breaking is stable and reliable. However, when ap is large, the significant difference in curling radius between points A and B can lead to chip clogging.

K-shape: This groove shape is characterized by a narrow front and wider rear open semi-groove, also known as inner inclined style. Unlike the Y-shape, point B in this groove has a narrower width and smaller depth, and the groove bottom has a positive rake angle, causing chips to easily depart from the workpiece and form tubular or ring-shaped spiral chips. Its chip-breaking range is relatively narrow and is mainly suitable for situations with low cutting volumes, finishing, semi-finishing, and guiding chip flow out of holes during hole machining.

The choice of chip groove parameters

(1)When cutting medium carbon steel with moderate back feed rates and feed rates (ap = 10.6mm/r) using cemented carbide turning tools, to achieve a C-shaped chip formation, it is recommended to use a straight circular arc-shaped chip breaker groove.

For small back feed rates (ap < 1mm), the recommended chip breaker groove mentioned above may not easily break the chips. Due to the width of the chip breaker groove, the chips, under the action of the tool tip arc and secondary cutting edge, may divert towards the primary cutting edge near the tool tip without passing through the groove bottom, thus not achieving additional curling deformation. As shown in Figure 5, you can use a D-shaped chip breaker groove, ground at a 45° incline, or choose a straight circular arc-shaped A-shaped chip breaker groove. When f = 0.1mm/r, you can take Wn = 3f, hn = f, Rn = f/2.

For large back feed rates and feed rates (ap > 10mm, f = 0.6~1.2mm/r), due to the wide and thick chips, forming a C-shaped chip can easily damage the cutting edge and cause splattering of chips, which can be dangerous. Typically, a full circular arc-shaped chip breaker groove with an increased radius Rn and reduced groove depth is used.

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 8

Fig.5 45-degree angled groove with small depth of cut and its chip range

Due to the significant deformation of low carbon steel chips, the chip thickness hDX is thicker than that of medium carbon steel under the same conditions, making it easier to break chips. Cutting practice has shown that, using the same chip breaker groove parameters, the chip range for low carbon steel is wider than that of medium carbon steel. Therefore, when cutting low carbon steel, the same chip breaker groove parameters as those for cutting medium carbon steel can be used.

(2)When cutting alloy steel such as 18CrMnTi, 38CrMoAl, 38CrSi, etc., it is generally recommended to use an external oblique chip breaker groove. The groove width Wn and arc radius Rn should be appropriately reduced to facilitate chip deformation due to the increased strength and toughness of alloy steel, making chip breaking more effective.

In metal cutting, there are often materials that are particularly difficult to chip, such as high-temperature alloys, high-strength steel, wear-resistant steel, stainless steel, and non-ferrous metals like pure copper, oxygen-free copper, and pure iron.

As shown in Figure 6, a double-edge chamfer angle can be used in combination with a typical external oblique chip breaker groove. The groove width Wn is typically set between 3.5 to 5mm, the external oblique angle τ is between 6° to 8°, the first edge chamfer angle λs1 is -3°, the second edge chamfer angle λs2 is between -20° to -25°, and the length Lλs2 is ap/3. The optimal cutting parameters are: ap=40.35mm/r, and vc=80~100m/min. This tool has excellent tip strength, a large chip curling radius, and typically produces conical spiral chips or short tube-like spiral chips. However, it generates 20% to 30% higher radial forces compared to single-edge chamfer angle tools and should not be used when the rigidity of the machining system is poor.

How to Make the Correct Choice for Lathe Tool Chip Breaker Shape 9

Figure 6 double-edged angled cutting edge

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

日本高清成人一区二区三区-亚洲国产精品久久成人-91福利国产午夜亚洲精品-极品激情国产剧情av| 91国产自拍视频在线-久久综合婷婷伊人五月天-国产日韩一区二区三区高清视频-日本电影一区二区5566| 办公室女厕偷拍美女撒尿-日本成人看片一区二区在线-丰满熟女少妇午夜福利-少妇被爽到高潮在线观看| 久久综合九色综合久久-在线看日韩欧美中文字幕-国产成人亚洲精品青草天美-91亚洲中文天堂在线观看| 亚洲国产成人精品毛片九色-成年片黄色大片品赏网-亚洲男人天堂色噜噜av-人妻免费精品久久一区| 日韩精品中文一区二区三区在线-午夜视频国产在线观看-日韩中文字幕av有码-最新日韩精品视频免费在线观看| 最好韩国日本免费高清-蜜桃视频一区二区三区在线观看-国产精品黄色大片在线看-日本高清视频亚洲不卡| 亚洲精品毛片免费观看-精品一区二区三区四区激情-特黄特色大片女生高潮久久-欧美午夜福利视频自拍| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列| 日韩三级在线视频不卡-国内自拍色第一页第二页-96热久久这里只有精品-日韩精品有码一区二区三区久久久| 99久久精品视频在线-日韩精品免费完整版视频-精品久久久久久久亚洲婷婷综合-久久精品国产亚州av| 熟女国产精品一区二区三-一区二区三区av这些免费观看-精品国产一区二区二三区在线观看-国产精品一品二区三区日韩| 国产偷拍自拍视频在线观看-丰满欧美熟妇视频在线-亚洲午夜激情在线观看-四虎视频精品免费观看| 国产成人精品一区二区日出白浆-亚洲女优大片在线观看-明星换脸av一区二区三区-四虎影院国产精品久久| 日韩一卡二卡在线播放-亚洲国产精品懂色av-青青热久免费精品视频在-久久精品中文字幕一区二区三区| 国产熟女老阿姨毛片看爽爽-精品少妇人妻久久免费-韩国午夜福利片在线观看-西川结衣在线中文字幕| 福利午夜视频在线观看-亚洲国产精品久久av麻豆-人妻被中出忍不住呻吟-国产极品尤物在线精品福利一区| 九九热久久这里有精品视频-2020亚洲欧美日韩在线-国产精品久久无遮挡影片-亚洲国产高清在线不卡| 亚洲高清精品偷拍一区二区-日本午夜理论一区二区在线观看-乱天堂黑夜的香蕉颜姿-天堂精品人妻一卡二卡| 国产成人一区二区免费av-国产成人精品一区二区不卡-亚洲乱码精品一区二区在线-青草视频免费在线观看尤物| 欧美日韩精品综合国产-亚洲国产综合中文字幕-精品国产乱码一区二区三区四区-麻豆精品三级国产国语| 91国际精品麻豆视频-蜜臀av国产在线观看-av一区二区三区精品-人妻精品一区二区三区av| 成年人午夜黄片视频资源-少妇高潮喷水在线观看-色网最新地址在线观看-人人爽人人澡人人人人妻那u还没| 91福利精品第一导航-国产一区二区三区不卡精品-偷拍日本美女公厕尿尿-国产黄三级三级三级看三级| 日韩人妻毛片中文字幕-国产精品亚洲综合第一页-国产精品久久亚洲av-亚洲国产精品一区二区不卡| 青青草视频在线观看免费网站-国产精品久久久久久亚洲影-在线播放国产精品一区二区-青青草免费观看高清视频| 日本在线观看一区二区免费-日本一区二区精品在线观看-老湿机午夜免费在线观看-成人在线永久免费观看| 中文字幕日韩精品人妻久久久-午夜福利激情视频在线观看-蜜桃黄网站视频在线观看-国产丰满熟女夜夜嗨av| 精品久久激情中文字幕-扒下语文老师的丝袜美腿-日韩欧美精品在线免费看-国产成人亚洲精品在线| 亚洲自拍偷拍另类第一页-麻豆国产午夜在线精品-久久精品一区二区三区综合-日本最近中文字幕免费| 免费观看一区二区av蜜桃-免费一级特黄久久大片-每日更新日韩中文字幕有码-97视频在线观看午夜| 亚洲不卡av影院在线-久久精品伊人久久精品-亚洲国产日韩欧美三级-久久亚洲中文字幕精品二区| 国产二区三区视频在线观看-四虎精品一区二区在线观看-国产中文字幕一区二区视频-精品一区二区三区av在线| 日本人妻中文字幕有码视频-男女啪啪视频免费观看一区-青青草原综合在线视频-极品人妻少妇精品一区二区| 亚洲美脚一区二区三区-亚洲一区二区三区在线激情-国产精品日韩精品在线-丰满少妇高潮在线观看| 国产精品美乳在线播放-久久午夜伦鲁鲁片免费-尤物视频免费在线观看-中文在线在线天堂中文| 一区二区三区日本在线播放-男人的天堂亚洲最新在线-各类女厕正面偷拍精品-91精品蜜臀国产自产| 午夜福利网午夜福利网-国产粉嫩学生在线观看-亚洲精品成人高清在线观看-亚洲人成人日韩中文字幕| 亚洲综合中文在线视频-在线视频福利精品91-久一在线免费播放视频-精品手机亚洲一区二区三区| 一级女性全黄久久生活片-日韩久久精品视频在线观看-国产精品色午夜免费视频-亚洲码欧洲码一区二区三区| 日韩有色视频在线观看-久久亚洲精品一区二区三区-风韵犹存久久一区二区三区-日本最黄网站在线观看|