色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The reliability of chip breaking in machining has a significant impact on both normal production and operator safety. In cutting operations, fragmented chips can splatter and cause injury, as well as damage the machine tool. On the other hand, long ribbon-like chips can get entangled with the workpiece or the tool, potentially scratching the workpiece, leading to tool breakage, and even compromising worker safety.

For CNC machine tools (machining centers) and other automated machining equipment, the issue of chip breaking becomes even more critical due to the larger number of tools and their close interaction with the tool holder. If even one tool has unreliable chip breaking, it could disrupt the machine’s automatic cycle and, in some cases, halt the entire production line. Therefore, when designing, selecting, or grinding tools, the reliability of chip breaking must be taken into consideration. Specifically for CNC machine tools (machining centers), the following requirements should be met:

  1. Chips must not wrap around the tool, workpiece, or adjacent tools and equipment.
  2. Chips must not splatter to ensure the safety of operators and observers.
  3. During precision machining, chips must not scratch the already processed surfaces of the workpiece, affecting the quality of those surfaces.
  4. Ensuring the intended durability of the tool, avoiding premature wear, and preventing tool breakage as much as possible.
  5. When chips flow out, they should not obstruct the delivery of cutting fluid.
  6. Chips should not damage machine tool guides or other components.How to Carry Out Chip Breaking on Work Piece? 2

Classification of Chip Shapes

The shape of chips produced in machining varies depending on factors such as workpiece material, tool geometry, and cutting parameters. Common chip shapes include ribbon chips, C-shaped chips, fragmented chips, pagoda-shaped curled chips, spring-shaped curled chips, long, tight spiral chips, and spiral chips (see Figure 1).

Ribbon Chips

When machining ductile materials at high speeds, continuous ribbon chips can form easily. These chips can become entangled around the workpiece or tool, potentially scratching the workpiece surface, damaging the cutting edge of the tool, or even causing injury. Thus, it’s generally best to avoid forming ribbon chips. However, there may be situations where ribbon chips are desired to facilitate chip removal, such as when boring blind holes on a vertical boring mill.

C-Shaped Chips

When turning general carbon steel or alloy steel materials and using cutting tools with chip breakers, C-shaped chips can form. C-shaped chips don’t have the disadvantages of ribbon chips. However, most C-shaped chips are prone to impact the back surface of the cutting tool or the workpiece, causing them to break (see Figure 2). The high-frequency breaking and fracturing of chips can affect the smoothness of the cutting process and, subsequently, the surface roughness of the finished part. Therefore, in precision machining, it’s generally not desired to produce C-shaped chips, but instead, longer spiral chips (see Figure 3) are preferred to maintain a smoother cutting process.

Spring-Shaped Curled Chips

When heavy cuts and large feed rates are used to turn steel parts on a heavy-duty lathe, wide and thick chips are produced. Forming C-shaped chips in this scenario can easily damage the cutting edge and even pose an injury risk. To prevent this, the radius of the chip breaker’s groove bottom is increased to create spring-shaped chips (see Figure 4). These chips collide and break on the machining surface, falling under their weight.

Spiral Chips

The formation of long, tight spiral chips is a smoother process, and they are easy to clean up. This chip shape is favored for use on regular lathes.

Pagoda-Shaped Curled Chips

When CNC machining or using automated machinery, it’s preferable to produce this chip shape because it doesn’t wrap around the cutting tool or workpiece, making it easier to clean up.

Fragmented Chips

When turning brittle materials like cast iron, brittle brass, or phosphor bronze, needle-like or fragmented chips can easily form. These chips are prone to splattering and causing injuries, as well as damaging the machine tool. Using chip-breaking methods can turn these chips into short, curled chips.

In conclusion, the desired chip shape in cutting operations varies based on specific conditions. Regardless of the chip shape, it’s essential for chip breaking to be reliable.

How to Carry Out Chip Breaking on Work Piece? 3

Mechanism?of Chip Breakage

Whether metal chips are prone to breaking during metal cutting is directly related to the deformation of chips. To understand the principles of chip breakage, one must first examine the deformation patterns of chips.

During metal cutting, chips undergo significant plastic deformation. This process leads to an increase in chip hardness but a significant decrease in plasticity and toughness. This phenomenon is known as strain hardening. After strain hardening, the chips become hard and brittle, making them prone to breaking when subjected to alternating bending or impact loads.

The degree of plastic deformation that chips undergo affects the extent of their strain hardening and susceptibility to breaking. In cases where high-strength, high-plasticity, and high-toughness materials are being machined, measures must be taken to increase chip deformation, thereby reducing their plasticity and toughness to facilitate chip breaking.

Chip deformation can be divided into two components:

Basic Deformation:?This is the deformation that occurs during the cutting process and is close to the values of basic deformation measured when free-cutting with a flat-fronted tool. The primary factors affecting basic deformation are the tool’s front clearance angle, negative rake angle, and cutting speed. A smaller front clearance angle, wider negative rake, and lower cutting speed result in greater chip deformation, which is favorable for chip breaking. Therefore, reducing the front clearance angle, increasing the negative rake angle, and decreasing the cutting speed can promote chip breaking.

Additional Deformation:?In most cases, basic deformation alone cannot result in chip breaking. Additional deformation is required to harden and break the chips. The simplest method to subject chips to additional deformation is to grind (or press) chip-breaking grooves on the tool’s front surface. When chips flow into these grooves, they experience additional bending and coiling deformation, leading to further hardening and brittleness. This makes the chips easily break upon contact with the workpiece or the tool’s back surface.

?? Par?as?nda Tala? K?rma Nas?l Yap?l?r? 4

Common Chip Breaking Methods

Using Chip-Breaking Grooves

Chip-breaking grooves are effective in achieving both basic and additional deformation. The shape, size, and angle of the grooves play a crucial role in chip breaking.

Using Chip Breakers

Chip breakers can be fixed or adjustable and are effective in controlling chip curling and breaking. They are often used on medium and large-sized machine tools.

Using Chip-Breaking Devices

These devices come in mechanical, hydraulic, and electrical forms, are reliable, but typically cost more. They are commonly used in automated production lines.

Using Pre-Grooved Workpiece Surfaces

Grooves are pre-cut on the workpiece surface parallel to its axis. These grooves, which are slightly shallower than the cutting depth, create weaker sections in the chip, facilitating chip breaking. This method can be particularly useful for machining tough materials.

In summary, achieving chip breaking depends on the material and cutting conditions. Various methods, including adjusting tool geometry, modifying cutting parameters, and using chip-breaking devices, can be employed to promote reliable chip breaking. Chip breaking is essential for safety and efficient metal cutting processes.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

国产二区三区视频在线观看-四虎精品一区二区在线观看-国产中文字幕一区二区视频-精品一区二区三区av在线| 久久精品国产亚洲av高-国产插菊花综合网亚洲-看亚洲裸体做爰av肉-成人免费观看性生活片| 一本大道加勒比东京热-国产一二三区亚洲精品美女-国产在线麻豆在拍91精品-久久久久成人亚洲国产| 欧美日韩在线有码中文-亚洲美女一区二区暴力深喉吞精-亚洲av日韩一区二区三区-国产激情视频在线观看播放| 亚洲av优女天堂熟女美女动态-激情免费视频一区二区三区-一区二区三区国产日韩av-最新国产内射在线免费看| 天堂亚洲国产av成人-野花视频在线观看免费-在线播放h视频的网站-僧侣交合的夜晚在线观看| 久久中文字幕人妻淑女-日韩欧美亚洲一中文字幕-日本免费一区二区三区视频-亚洲精品乱码免费精品乱码| 精品少妇人妻av蜜桃-成年人网站在线免费播放不卡-免费黄色片成人国产精品-蜜桃中文字幕在线视频| 亚洲女人性开放视频免费-亚洲婷婷精品久久久久-亚洲中字字幕中文乱码-韩日av不卡一区二区三区| 亚洲少妇插进去综合网-久草免费在线人妻视频-丰满人妻熟妇乱精品视频-日韩极品精品视频免费在线观看| 婷婷激情五月天第四色-岛国片av在线免费观看-久久综合久久一区二区-91青青草原免费观看| 日本岛国三级黄色录像-日韩久久成人免费电影-中文字幕日韩专区一区二区-国产成人大片在线播放| 日韩少妇黄色在线观看-国产精品视频不卡一区二区-国产成+人+亚洲+欧美+综合-欧美日韩亚洲大陆国产| 亚洲免费国产午夜视频-女同亚洲一区二区三区精品久久-欧美一级黄片高清免费-久久国产亚洲中文字幕| 国产精品大片中文字幕-国产丝袜av一区二区免费-亚洲av巨作一级精品-国产成人综合亚洲欧美天堂| 高清有码在线观看日本-精品少妇人妻一区av-色综合久久成人综合网-久久久国产精品人妻一区二区三区| 欧美日本高清乱码一区二区-国产亚洲精品成人看片-性生交大片免费看淑女出一招-亚洲综合中文字幕综合| 亚洲三级电影久久网络-中文字幕第一页亚洲天堂-九九热视频这里只有精-国产免费av国片精品| 蜜臀av午夜精品福利-日韩精品av在线一区二区-丰满熟女人妻一区二区三区-懂色日韩欧美国产亚洲| 免费手机在线观看bbb视频-国产欧美亚洲精品第1页青草-国产黄a三级三18级三级看三级-宅男视频在线观看一区二区三区| 国产精品欧美日韩视频二区-少妇人妻系列中文在线-精品人妻一区二区三区四区不卡-少妇被无套内谢免费视频| 绯色av一区二区三区亚洲人妻-99热这里只有精品小说-在线播放国产日韩不卡免费视频-国产高清在线不卡一区二区视频| 国产精品亚洲精品午夜-欧美日韩成人精品久久二区-自拍偷拍福利视频在线观看-91精品蜜桃一区二区三区| 国产精品午夜免费福利-亚洲香蕉视频网在线观看-四虎私人福利妞妞视频-91国产丝袜在线观看| 伊人久久大香线蕉综合av-久久久中文字幕人妻精品一区二区-青草在线免费观看视频-国产清纯白嫩美女蜜臀av| 亚洲五月六月丁香缴情久久-国产精品国产三级国产一区-人妻中文字幕一区二区三区四区-精品在线视频尤物女神| 日本亚洲午夜福利视频-欧美日韩高清精品一区二区-av成人免费在线视频-日韩精品一区二区三区费暖暖| 激情综合亚洲欧美调教-亚洲综合日韩精品国产-国产成人亚洲精品av大片-久草青青亚洲毛片在线视频| 亚洲乱码中文字幕综合-欧美日韩亚洲综合久久精品-美女隐私无遮挡免费网站-国产精品激情av在线播放| 国产精品国产三级国产专区55-伊人久久大香线蕉亚洲-av男人的天堂在线观看-国产女主播在线一区二区三区| 在线播放中文字幕国产精品-亚洲av成人免费在线观看-国产男女激情视频免费观看-亚洲av黄片一区二区三区| 国产精品 一区二区 久久-国产在线一区二区三区四区视频-午夜日本在线观看视频-日韩一区二区中文字幕18禁| 四虎最新在线观看视频-水蜜桃一二二视频在线观看免费-一区二区精品在线观看视频-成人高清在线播放视频| 色和尚在线视频久天天-少妇高潮太爽了在线免费观看-伊人久久大香线蕉午夜av一区-亚洲国产精品不伦不卡| 热99在线视频免费观看-日本老男人同性恋黄色.-精品国产一区二区三区四不卡在线-久亚洲一线产区二线产区三线麻豆| 精品视频在线观看免费一区二区-哪里可以看国产视频一区二区三区-亚洲天堂av在线免费观看-国产大片网站在线观看| 国产一级r片内射视频播放-中文字幕最新精品资源-久久青青草原精品国产麻豆综合-深夜成人在线免费视频| 99久久免费精品老色-白色白色在线观看视频-91麻豆精品在线播放-日本人妻少妇中文字幕| 3p人妻一区二区三区-亚洲精品国产高清自拍-女同国产日韩精品在线-亚洲午夜国产激情福利网站| 国产成人高清视频在线观看免费-人妻精品一区二区在线视频-国产成人一区二区三区精品久久-农村肥白老熟妇20p| 日本亚洲午夜福利视频-欧美日韩高清精品一区二区-av成人免费在线视频-日韩精品一区二区三区费暖暖|