色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Cemented carbide is a composite material composed of high-hardness refractory metal carbides and cemented metals. Because of its high hardness, wear resistance, and stable chemical properties, it is used in modern tool materials and wear-resistant materials. High temperature and corrosion resistant materials occupy an important position. At present, tungsten carbide-based hard alloys are the most widely used among the carbides produced in the world, with the largest output and the most extensive use. Among them, the WC hard alloy used in mines has been regarded as the “tooth” of the mine development, oil drilling and geological exploration industries, and has received extensive attention.
Mine rock drilling tools are composed of a metal base body and different geometric shapes embedded therein and different grades of WC hard alloy drill teeth according to different working conditions. Take pick-axle picks as an example, the working environment of the picks is harsh, and in addition to the abrasive wear under compression, bending, and high stress, it also bears an indefinite impact force, so carbides often occur during coal mining. The head is broken and falls off, which leads to premature wear and failure of the pick-up matrix, which makes the life of the pick-shaped picks much lower than the design life. Therefore, an excellent hard alloy for mining should have high strength, high hardness required for abrasion resistance and high toughness required for resistance to impact fracture.

Features And Preparation Of Tungsten Carbide Mining Tool 1

Tungsten Carbide Mining Tool Features

1.1 Wear resistance of WC alloy

The shearer of the shearer is in direct contact with the coal seam during the working process. The abrasive wear characteristics of the shearer are closely related to the coal seam structure and hardness. The hardness of the coal is low, generally 100 to 420 HV, but the coal often contains different hardness. Impurities such as quartz and pyrite (900 to 1100 HV) have high hardness and have a great influence on the abrasive wear characteristics of picks.
In most of the operating examples, wear resistance is a basic function of material hardness. The higher the hardness, the higher the abrasive wear resistance. Pure WC is very hard and similar to diamond. In cemented carbide, WC particles form a strong skeleton, so WC cemented carbides exhibit very high hardness. In addition, WC belongs to the hexagonal crystal system and has anisotropy in hardness. The Vickers hardness of the bottom surface {0001} and the edge surface {1010} is 2 100 HV and 1 080 HV, respectively. In the coarse-grained cemented carbide, the proportion of WC grains on the {0001} plane is high, and thus the carbide containing the coarse-grained WC shows higher hardness. At the same time, at a high temperature of 1 000°C, coarse-grained WC hard alloys have higher hardness than ordinary hard alloys and show good red hardness.
In the coal cutting process, WC particles are exposed on the surface of the cemented carbide after cemented phases of the cemented carbide in the tool nose protected by the built-up edge have been squeezed away or are carried away by abrasive scraping. Bonded phase-supported WC particles are easily crushed, destroyed and released. Due to coarse WC grains, the cemented carbide has a strong holding force with respect to the WC, and the WC grains are difficult to pull out and exhibit excellent wear resistance.

1.2 Toughness of WC Alloy

When the cutter bit cuts the coal rock, the cutter head is subjected to high-stress stress, tensile stress and shear stress under the action of the impact load. When the stress exceeds the strength limit of the alloy, the alloy cutter head will be fragmented. Even if the generated stress does not reach the strength limit of the cemented carbide, the fatigue cracking of the cemented carbide will occur under the repeated action of the impact load, and the expansion of the fatigue crack may cause the tool head to fall off or chipping. At the same time, when cutting the coal seam, the shearer pick produces high temperature of 600-800°C on the cutting surface, and the cutting cutting coal seam is a periodic rotary motion. The temperature rise is alternating, and the temperature increases when the cutter head contacts the coal rock. , cool down when leaving the coal rock. Due to the constant change of the surface temperature, the dislocation density increases and concentrates, and the surface of the serpentine pattern appears.
The depth of cracks and the rate of propagation decrease with increasing carbide grain size, and the morphology, direction, and depth of cracks also vary with WC grain size. The cracks in fine-grained alloys are mostly straight and small and long; coarse-grained alloy cracks are irregular and short. The cracks mainly extend at the weak grain boundary. In the coarse-grained cemented carbide, if the micro-cracks bypass the coarse-grained WC grains, they are zigzag-shaped and must have energy that matches the fracture area; if they pass through When WC grains are expanded, they must have considerable fracture energy. As a result, the coarse-grained WC grains have enhanced deflection and bifurcation of cracks, which can prevent the further propagation of micro-cracks and increase the toughness of the cemented carbide. With the same content of cementitious phase, the coarse-grained alloy has a thicker bonding phase, which is beneficial to the plastic deformation of the bonding phase, inhibits the extension of cracks, and shows good toughness.
Studies on the strength and structure of WC-Co cemented carbide also show that there is a certain rule between the strength of cemented carbide and the grain size of WC. When the cobalt content is constant, the strength of conventional low-cobalt alloys always increases as the grain size of WC in the cemented carbide becomes coarser, and the strength of the alloy with higher cobalt content peaks with WC grain coarsening.

2 Research Progress on Preparation Process of Mining WC Alloy

At present, tungsten carbide powders are generally prepared by the process of reducing tungsten oxide to obtain coarse tungsten powder, tungsten powder obtained by high-temperature carbonization to obtain coarse WC powder, and WC powder and Co powder through mixing, wet grinding and sintering. Among them, the choice of coarse WC powder preparation, sintering process and equipment directly affects the performance of the mine WC alloy.

2.1 Preparation of WC Powder

(1) Preparation of coarse tungsten powder

Luo Binhui’s test results show that the oxygen content of tungsten oxide raw material directly affects the particle size of tungsten powder. To produce ultra-fine tungsten powder, tungsten oxide with lower oxygen content should be selected as raw material (usually purple tungsten), and coarser tungsten powder should be selected for oxygen production. A high content of tungsten oxide (yellow tungsten or blue tungsten) is used as a raw material. The results of Zhang Li et al. showed that compared with yellow tungsten, the use of blue tungsten to obtain coarse-grain tungsten powder has no advantage in particle size and distribution. However, the surface micropores are less tungsten powders made from yellow tungsten, and the overall performance of cemented carbides is better. It is known that the addition of an alkali metal to tungsten oxide contributes to the long coarseness of the tungsten powder, but the residual alkali metal in the tungsten powder suppresses the growth of WC crystal grains. Sun Baoqi et al. used lithium-activated tungsten oxide for hydrogen reduction to prepare coarse tungsten powder. Based on the experimental results, he explored the mechanism of activation and grain growth. He believed that by adding volatile lithium salt, the volatile deposition rate during the reduction of tungsten oxide was accelerated, resulting in Tungsten grows at lower temperatures. Huang Xin added Na salt in WO 3 for intermediate temperature reduction. The particle size of tungsten powder is proportional to the amount of Na added. With the increase of Na addition, the number of large crystal grains increased from 50 to 100 μm.

(2) Classification of tungsten powder

Gao Hui believes that the classification of tungsten powder can effectively change the properties of powder and solve the problem of uneven thickness of powder. Reduce the difference between the minimum, maximum, and average particle diameters to produce a coarser, more uniform WC powder; due to the characteristics of tungsten, it is not easily broken, and moderate crushing is performed prior to classification to separate the agglomerated particles in the powder. , more effective separation of powder, improve the uniformity.

(3) Coarse WC Powder Preparation

Preparation of coarse-grained WC powders by high-temperature carbonization of coarse-grained tungsten powders is a classical and classical method. The coarse-grain tungsten powders are mixed with carbon black and then mixed into a carbon tube furnace. The carbonization temperature of coarse tungsten powders is generally about 1 600°C, and the carbonization time is 1 ~ 2 h. Due to carbonization at a high temperature for a long time, this method minimizes the lattice defects of WC and minimizes the microscopic strain, thereby improving the plasticity of WC. In recent years, the tungsten powder carbonization process has been continuously developed. Some cemented carbide production plants have begun to adopt advanced intermediate frequency induction furnaces for vacuum carbonization and hydrogenation.
Due to the phenomenon of sintering and growth of WC powder particles, WC particles grow thicker and thicker at high temperatures. In addition, the finer the original tungsten powder, the more obvious the phenomenon of high temperature and WC grain growth. It is based on this principle that the use of medium-grained tungsten powder and even fine-grained tungsten powders for high-temperature carbonization to obtain coarse-grained tungsten carbide. The use of tungsten powder (Fisher sub-sieve sixer, Fsss 5.61 to 9.45 μm) was reported in the literature. The carbonization temperature was 1 800 to 1 900 °C, and WC powder with Fsss 7.5 to 11.80 μm was obtained. Fine tungsten powder was used. (Fsss < 2.5 μm), carbonization temperature 2 000°C, WC powder with Fsss of 7 to 8 μm was prepared. Due to the large density difference between tungsten and WC, the tungsten particles convert to WC particles during the conversion from tungsten to WC.
The resulting WC particles contain large strain energy, and some of the WC particles burst as a result, and the WC particles become smaller after blasting. Huang Xin et al. adopted a two-step carbonization method. Since the first time was incomplete carbonization, the particle core part remained pure tungsten, and the surface layer of the particles had been carbonized completely. Pure tungsten could be recrystallized to consume part of the strain energy, thereby reducing grain cracking. The probability. Compared with the conventional one-step WC powder, the coarse-grained WC powder produced by the two-step method has a single phase composition and almost no W 2 C, WC (1-x) and other miscellaneous phases. Zhang Li et al. studied the effect of Co doping on the grain size and micro morphology of coarse and coarse WC powders. The results show that Co doping is beneficial to the increase of grain size and free carbon of WC powder and is beneficial to single crystals. WC powder. When the doping content of Co is 0.035%, the crystal integrity of the WC grains is significantly improved, showing a distinct growth step and growth plane.

(4) Coarse-crystal aluminum thermal process

The distinctive feature is that tungsten carbide can be used to directly produce tungsten carbide, and the tungsten carbide powder produced is particularly thick and carbonized. A mixture of tungsten ore and iron oxide is reduced with aluminum, while carbide is used for calcium carbide. As long as the charge is ignited, the reaction proceeds spontaneously, resulting in an exothermic reaction with a self-heating temperature of up to 2500°C. After the reaction is over, the reaction kiln and material are allowed to cool down. The lower part of the kiln will produce a WC-based block layer, and the rest will be metal iron, manganese, excess metal aluminum, and a small amount of slag. The upper slag layer was separated, the lower ingot was crushed, excess calcium carbide was removed by washing with water, iron, manganese, and aluminum were removed by acid treatment, and finally, WC crystals were sorted by gravity dressing. The WC produced by this process is ground to a micron level for use with a variety of different cemented carbides.

2.2 Sintering of WC Carbide

(1) Vacuum sintering

In the vacuum sintering, the wettability of the bonding metal to the hard phase is significantly improved, and the product is not easily carburized and decarburized. Therefore, many of the world’s famous cemented carbide manufacturers use vacuum sintering, and vacuum sintering in China’s industrial production has gradually replaced hydrogen sintering. Mo Shengqiu studied the preparation of WC-Co cemented carbide with low cobalt content by vacuum sintering, and pointed out that the process system in the pre-firing stage is the key to vacuum sintering of WC-Co cemented carbide with low cobalt content. At this stage, the impurities and oxygen in the alloy are eliminated, the volumetric shrinkage is relatively intense, and the density increases rapidly. The pre-burning vacuum in the 0.11 ~ 0.21 MPa alloy has better final performance. For coarse-grained WC-Co cemented carbides with cobalt content between 4% and 6%, for high strength, the pre-sintering temperature should be between 1 320 and 1 370 °C.

(2) Low pressure hot isostatic pressing

Vacuum sintered cemented carbide has a small amount of pores and defects. These pores and defects not only affect the performance of the material, but also tend to be the source of the fracture during use. Hot isostatic pressing technology is an effective method to solve this problem. From the early 1990s, low-pressure hot isostatic pressing sintering furnaces were introduced in some large enterprises in China, such as Jianghan Bit Factory, Zhuzhou Cemented Carbide Factory, and Zigong Cemented Carbide Factory; Low-pressure sintering furnaces independently developed by Beijing Iron and Steel Research Institute have been put into operation. use. The application of low pressure hot isostatic pressing reduces the porosity of the cemented carbide and the structure is dense, and improves the impact toughness of the alloy and improves the life of the cemented carbide.
Jia Zuocheng and other experimental results show that the low pressure hot isostatic pressing process is beneficial to the elimination of voids in the alloy and WC grain growth, and increases the flexural strength of coarse-grained WC-15Co and WC-22Co alloys. Xie Hong et al. studied the effects of vacuum sintering and low-pressure sintering on the properties of WC-6Co cemented carbides. The results show that the vacuum sintering material Vickers hardness 1 690kg / mm 2, the transverse rupture strength is 1 830 MPa, while the low-pressure sintered material Vickers hardness is increased to 1 720 kg / mm 2, the transverse rupture strength is 2140 MPa. Wang Yimin also produced WC-8Co alloys by vacuum sintering and low pressure sintering. The results show that the vacuum sintered material has a hardness of 89.5 HRA and a transverse rupture strength of 2270 MPa; and the low-pressure sintered material has an increased hardness of 89.9 HRA and transverse fracture. The strength is 2 520 MPa. The temperature uniformity of the sintering furnace is an important factor affecting the quality of high-performance carbide products. A large number of studies have simulated and optimized the temperature field in the sintering furnace. The literature proposes a piecewise simulation method that is consistent with the experimental results. The temperature distribution in the graphite tube is not uniform, which is mainly due to the unreasonable arrangement of the graphite boat and the sintered product and the structure of the graphite tube. In the test, optimization measures were proposed to reduce the surface temperature deviation of sintered products by approximately 10 K during the vacuum phase and within ±7 K during the gas heating phase, thereby improving the sintering quality.

(3) Spark Plasma Sintering (SPS)

A method of sintering under pressurized conditions using instantaneous and intermittent discharge energy. The mechanism of SPS sintering is still controversial. Scholars at home and abroad have conducted extensive research on this topic. It is generally believed that a discharge plasma is instantaneously generated when a direct current pulse is applied to an electrode, so that heat generated uniformly by each particle in the sintered body activates the surface of the particle, and sintering is performed by the self-heating effect of the inside of the powder. Liu Xuemei et al used XRD, EBSD and other test methods to compare the phase composition, microstructure and properties of the hard alloy materials obtained by hot press and spark plasma sintering. The results show that the SPS sintered materials have high fracture toughness. Xia Yanghua, etc. using SPS technology with an initial pressure of 30 MPa, sintering temperature 1 350 °C, holding 8 min, the temperature of 200 °C / min prepared carbide hardness of 91 HRA, transverse fracture strength of 1 269 MPa. The literature uses SPS technology to sinter WC-Co cemented carbides. It can produce WC- with relative density of 99%, HRA ≥ 93 and good phase formation and uniform microstructure under sintering temperature of 1270°C and sintering pressure of 90 MPa. Co Carbide. Zhao et al. of the University of California, USA prepared the binder-free cemented carbide by SPS method. The sintering pressure was 126 MPa, the sintering temperature was 1 750°C, and no holding time was obtained. A fully dense alloy was obtained but a small amount of W 2 C phase was contained. In order to remove impurities, an excess of carbon was added. The sintering temperature was 1 550°C and the holding temperature was 5 μm. The material density remained unchanged and the Vickers hardness was 2 500 kg / mm 2.
Spark plasma sintering as a new type of rapid sintering technology has broad application prospects. However, the research at home and abroad is still limited to the laboratory research stage. The sintering mechanism and sintering equipment are the main obstacles to its development. SPS sintering mechanism is still controversial, especially the intermediate processes and phenomena of sintering have yet to be further studied. In addition, the SPS equipment uses graphite as a mold. Because of its high brittleness and low strength, it is not conducive to high-temperature and high-pressure sintering. Therefore, the mold utilization rate is low. For actual production, it is necessary to develop new mold materials with higher strength and reusability than the currently used mold materials (graphite) in order to increase the bearing capacity of the mold and reduce the cost of the mold. In the process, it is necessary to establish the temperature difference between the mold temperature and the actual temperature of the workpiece in order to better control the product quality.

(4) Microwave sintering

A method in which microwave energy is converted into heat energy for sintering by using the dielectric loss of a dielectric in a high-frequency electric field, and the entire material is uniformly heated to a certain temperature to achieve densification and sintering. The heat is generated from the coupling of the material itself with the microwave, rather than from the external heat source. The Monika team studied the microwave sintering and traditional sintering densification of WC-6Co cemented carbides. The experimental results show that the degree of densification of microwave sintering is faster than that of traditional sintering. Researchers at the University of Pennsylvania studied the production of tungsten carbide products in the microwave sintering industry. They have higher mechanical properties than conventional products, and have good microstructure uniformity and low porosity. The microwave sintering process of WC-10Co cemented carbide by microwave sintering was studied in the omni-peak system. The interaction of microwave electric field, magnetic field and microwave electromagnetic field on WC-10Co cemented carbide was analyzed.
The lack of material properties data and equipment are two major obstacles to the development of microwave sintering technology. Without the data on the material properties of materials, one cannot know the mechanism of action with microwaves. Due to the strong selectivity of microwave sintering furnaces for products, the parameters of microwave ovens required for different products are very different. It is difficult to manufacture microwave sintering equipment with a high degree of automation, with variable frequency and automatic tuning functions, which is a bottleneck restricting its development.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

日本一区二区三区最新章节-香蕉av久久一区二区三区-久久久国产亚洲精品视频-国产伦精品一区二区三区精品视频| 一本色道久久综合亚洲精-亚洲精品一区二区三区乱码-性生活高清免费视频免费-99热这里只有的精品3| 国产在线观看不卡一区二区-国产女人在线观看视频射精91-91尤物在线视频观看-欧美无遮挡国产欧美另类| 日韩成人大片一区二区三区-国产一级淫片av免费-18禁免费观看网站入口-国产黄色特级片一区二区三区| 黄片毛片av免费观看-四虎国产精品久久免费地址-精品午夜一区二区三区国产av-亚洲成a人一区二区三区久久| 国产精品午夜免费福利-亚洲香蕉视频网在线观看-四虎私人福利妞妞视频-91国产丝袜在线观看| 天堂av免费资源在线观看-青春草在线视频播放免费观看网站-亚洲精品中文字幕久久桃色-亚洲成人有码免费在线| 少妇高潮叫床免费网站在线观看-亚洲av狠狠的爱一区二区-激情综合成年免费视频-中文字幕人妻系列在线| 亚洲乱色熟女一区二区三区蜜臀-亚洲精品午夜在线免费观看-综合成人亚洲偷自拍色-色综合久久精品中文字幕| 91免费视频完整版高清-久久青草国产日韩资源-黄色激情网站免费提供-国产精品麻豆三级一区视频| 悠悠成人资源亚洲一区二区-国产成人综合亚洲国产-青青草在线公开免费视频-91精品日本在线视频| 91麻豆免费视频播放-欧美一级黄片免费在线播放-av免费网站不卡观看-日韩女同中文字幕在线| 午夜性色福利在线视频福利-久久精品视频免费获取地址-亚洲一区二区三区在线观看不卡-无套进入美女免费观看视频| 大奶人妻丝袜中出在线-亚洲一区久久中文字幕-国产成人av剧情自拍网站-嫩草伊人久久精品少妇av| 国产亚洲成人精品久久久-亚洲免费av高清在线观看-在线观看国内自拍视频-亚洲国产成人精品综合色| 日韩中文字幕乱码久久-日本一本无道码日韩精品-久久最黄性生活又爽又黄特级片-亚洲av香蕉精品一区二区三区| 四虎在线精品视频免费播放-日韩女同av在线观看-av日韩黄片在线播放-日本人体午夜福利视频| 亚洲区一区二区三区四区-精品亚洲国产成人av-国产美腿丝袜诱惑在线观看-美女抠逼视频免费网站| 欧洲激情综合啪啪五月-国产精选三级在线观看-七七久久成人影院网站-男人深夜福利在线观看| 亚洲最大的偷拍视频网站-国产三级精品三级男人的天堂-国产成人免费精彩视频-一区二区精品日韩国产精品| 日韩色视频免费观看网站大全-免费中文对白国产操片-国产农村妇女一页二页-欧美三级午夜理伦三级在线| 高清国产av一二三四-少妇激情高潮视频网站-被公么玩弄邻居人妻中文字幕-亚洲免费成人av在线| 精品少妇人妻av蜜桃-成年人网站在线免费播放不卡-免费黄色片成人国产精品-蜜桃中文字幕在线视频| 日本在线观看一区二区免费-日本一区二区精品在线观看-老湿机午夜免费在线观看-成人在线永久免费观看| 欧美日韩精品综合国产-亚洲国产综合中文字幕-精品国产乱码一区二区三区四区-麻豆精品三级国产国语| 国内一级一片内射免费视频观-最新国产在线视频在线-免费在线观看国产特级片-国产午夜免费观看在线视频| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频| 99久久久国产精品视频-亚洲最大的福利视频网站-日韩人妻精品一区二区在线-中文字幕乱码精品在线观看| 亚洲精品中文综合第一页-91九色国产在线观看-小少妇特殊按摩高潮不止-沈阳老熟女多毛嗷嗷叫| 国产自拍成人激情视频-欧美大香蕉在线视频观看-精品人妻一区二区三区麻豆91-经典三级一区二区三区| 国产精品一区二区小视频-欧美亚洲国产精品激情在线-日韩免费视频一区二区三区视频-精品亚洲国产成av人片传媒| 少妇高潮叫床免费网站在线观看-亚洲av狠狠的爱一区二区-激情综合成年免费视频-中文字幕人妻系列在线| 91老熟女老女人国产老太-av在线亚洲av男人的天堂-国产精品久久久区三区天天噜-能看不卡视频网站在线| 国产免费无套精品视频-日本特色特黄aaa大片免费-日本精品免费一区二区三区-九九热精品视频在线免费| 丰满女性丰满女性性教视频-国产日韩欧美精品av-日韩区一区二区三区在线观看-四虎国产精品成人免费久久| 国产精品自拍射精视频-蜜桃视频在线中文字幕-黑人泄欲一区二区三区-国内少妇无套内射精品视频| 国产精品乱码一区二区三区视频-国产自拍精品在线一区二区-五月综合丁香婷婷久久-在线国产精品一区二区三区| 起碰在线视频免费播放-人妻在线视频一区二区三区-日韩伦理在线一区二区三区-久久女厕视频偷拍一区二区| 日本老熟妇在线视频网-精品人妻在线一区二区三区视频-91亚洲国产成人精品福利-青青草免费手机直播视频| 久久都是精品久久都是精品-精国精品一区二区成人-亚洲品质自拍在线观看-中文 字幕乱码高清视频| 男人的精品天堂一区二区在线观看-婷婷久久香蕉毛片毛片-久久视频在线观看夫妻-亚洲国产一区久久yourpan|