色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

A face milling cutter is primarily used for machining flat surfaces. It features multiple cutting teeth engaged in cutting simultaneously, offering stable operation.If we want to choose a face mill cutter, we need to follow these principles below.

 

Structural Types

carbide?face milling cutters can be categorized into three types: integral welding type, mechanical clamping ?type, and indexable type.

The diagram 1 below illustrates an integral welding type face milling cutter. This type has a compact structure and is relatively easy to manufacture. However, if the teeth are damaged, the entire milling cutter must be discarded, so its usage has decreased.

welded face mill cutters and clamped face mill cutters

As shown in the above diagram is the mechanical clamping welding type face milling cutter. This cutter welds carbide?inserts onto small cutter heads, which are then mechanically clamped into slots on the cutter body. When the inserts are worn out, they can be replaced with new ones, thereby extending the cutter body’s service life.

How to Choose a Face Mill Cutter based on 3 Elemental Factors? 2

As shown in Figure 2, the commonly used indexable face milling cutter consists of components such as the cutter body (5), insert (1), tightening screws (3), cutter blade (6), wedge block (2), and eccentric pin (4). The insert (1) is clamped onto the cutter body using the wedge block (2) and tightening screws (3). Before tightening the screws, the eccentric pin (4) is rotated to adjust the axial runout of the insert within a specified range at the axial support point. Once the cutter blade (6) is mounted on the insert, it is clamped in place by the wedge block (2) and tightening screws (3). The eccentric pin (4) also prevents excessive axial forces on the insert during cutting, thereby preventing axial movement.

 

Compared to high-speed steel face milling cutters, carbide?face milling cutters offer higher milling speeds, better processing efficiency, and improved surface quality. They are capable of machining workpieces with hardened surfaces and layers, demonstrating significant advantages in enhancing product quality and processing efficiency.

How to Choose a Face Mill Cutter based on 3 Elemental Factors? 3

Face Milling Cutter Main Structural Parameters

(1) Diameter and Number of Teeth

Diameter and number of teeth are the two main structural parameters of a face milling cutter. To accommodate different cutting requirements, face milling cutters of the same diameter are classified into coarse, medium, and fine types based on the number of teeth. Taking a 100 mm diameter cutter as an example, the number of teeth for coarse, medium, and fine types are 5 teeth, 6 teeth, and 8 teeth respectively.

 

(2) Geometric Angles

Indexable face milling cutters have key geometric angles including the lead angle κr, rake angle γp, and clearance angle γf. The lead angle κr is available in 45°, 60°, 75°, and 90° variants, with 75° being the most commonly used. When machining flat surfaces with shoulders or thin-walled workpieces, a 90° lead angle is typically chosen.

The rake angle γp and clearance angle γf can be combined into positive rake, negative rake, and positive-negative rake configurations. Positive rake angles are used for machining general materials; for instance, γp=7° and γf=0° are common for milling mild steel and cast iron, while γp=18° and γf=11° are used for milling aluminum alloys. Negative rake angles are employed for machining cast steel and hard materials, often set at γp=-7° and γf=-6°. Positive-negative rake angles offer good impact resistance and chip removal properties, suitable for milling general steel and cast iron, commonly used on machining centers with values like γp=12° and γf=-8°.

How to Choose a Face Mill Cutter based on 3 Elemental Factors? 4

How to Select a Face Milling Cutter?

Selection of Face Milling Cutter Diameter

(1) When the machining area is not large, it is important to choose a tool or milling cutter with a diameter larger than the width of the plane. This allows for single-pass face milling. When the width of the face milling cutter is 1.3 to 1.6 times the width of the machining area, it effectively ensures proper chip formation and removal.

 

(2) For machining large surface areas, it is necessary to select a milling cutter with an appropriate diameter and perform multiple passes for face milling. Due to machine limitations, cutting depth, width, and the dimensions of the cutter and inserts, the diameter of the milling cutter may be constrained.

 

(3) When machining small plane areas or dispersed workpieces, a smaller diameter end mill should be selected for milling. To achieve optimal efficiency, the milling cutter should have contact with the workpiece equal to 2/3 of its diameter, which means the milling cutter diameter should be 1.5 times the width of the cut. Properly using this ratio of cutter diameter to cutting width ensures the milling cutter approaches the workpiece at an ideal angle. If the machine’s power cannot sustain cutting at this ratio, axial cutting thickness can be divided into two or more passes to maintain the ratio of cutter diameter to cutting width as much as possible.

 

Selection of Number of Teeth on the Milling Cutter

When selecting a milling cutter for machining, the number of teeth is an important consideration. For example, a coarse-toothed milling cutter with 6 teeth has a diameter of 100 mm, whereas a fine-toothed milling cutter with 8 teeth also has a diameter of 100 mm. The density of teeth affects both production efficiency and product quality. Dense teeth improve efficiency and quality but may hinder chip removal. Depending on the diameter of the teeth, they can be categorized as sparse teeth, fine teeth, and dense teeth.

 

Sparse teeth are used for rough machining of workpieces, with 1 to 1.5 inserts per 25.4 mm diameter, providing ample space for chips. Such tools are suitable for continuous chip formation in soft materials, using long blades and wide cuts. Dense teeth are advantageous for stable machining conditions, typically used for rough machining of cast iron, shallow and narrow cuts in high-temperature alloys, and when chip space is not required.

Dense teeth are applied in fine milling, with axial cutting depths ranging from 0.25 to 0.64 mm per tooth, minimizing cutting loads and power requirements, suitable for machining thin-walled materials.

 

Selection of Milling Inserts

The choice of milling inserts for flat milling is a critical factor to consider. In certain machining scenarios, pressed inserts are more suitable, while in others, ground inserts are preferred.

For rough machining

Pressed inserts are often preferred as they lower machining costs. Pressed inserts have lower dimensional accuracy and edge sharpness compared to ground inserts. However, they offer better edge strength, making them suitable for rough milling tasks. They can withstand higher impact and accommodate larger depths of cut and feed rates. Pressed inserts typically feature chip grooves on the front face, reducing cutting forces and friction with the workpiece and chips, thereby lowering power requirements. However, their surface finish is less compact than ground inserts, resulting in varying heights among insert tips on the milling cutter body. Due to their cost-effectiveness, pressed inserts find widespread use in production.

 

For fine milling

Ground inserts are preferable due to their superior dimensional accuracy. This high precision ensures precise positioning of the cutting edge during milling, leading to higher machining accuracy and lower surface roughness values. Moreover, the trend in ground milling inserts for fine machining includes forming large positive rake cutting edges with chip grooves, allowing the inserts to handle small feed rates and depths of cut effectively. In contrast, carbide?inserts without sharp rake angles may experience friction with the workpiece during fine machining with small feed rates and depths of cut, reducing tool life.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

日韩毛片精品一区二区-无套内谢少妇高潮毛片些-国产精品午夜激情视频-亚洲天码一区二区三区| 日本亚洲一线二线三线-九月丁香婷婷啪啪色综合-狠狠综合欧美综合欧美色-亚洲丁香视频中文在线| 亚洲精品人妻中文在线-国产成人精品视频三级-麻豆视频黄片在线免费观看-亚洲性色精品一区二区在线| 成人国产精品一区二区香蕉-一区二区三区欧美日韩电影在线观看-午夜福利视频合集一区二区-人妻少妇被粗大爽在线| 九九热在线免费视频精品-偷拍日本美女厕所尿尿-深夜老司机福利在线观看-偷拍精品视频日本久久| 欧美性色婷婷久久久精品-久久这里只有精品国产宅男av-久久男女爱爱视频免费观看-另类福利亚洲丝袜激情在线| 欧美日韩激情片在线观看-色男人天堂网在线观看-亚洲一级特黄大片免色-国产十八禁免费在线观看| 亚洲伊人色综合网站亚洲伊人-香蕉久久国产超碰青草91-激情综合七月插插综合-亚洲一区二区三区夏目彩春| 天天射天天插天天色综合-亚洲一二三四区中文字幕-97视频精品在线观看-久久婷婷激情五月综合色| 午夜性色福利在线视频福利-久久精品视频免费获取地址-亚洲一区二区三区在线观看不卡-无套进入美女免费观看视频| 很黄无遮挡在线免费网站-韩国精品一区福利视频在线播放-爱看色黄色大片儿网站-日韩综合一区二区三区在线观看| 熟妇久久人妻中文字幕-国产精品久久久久精品三级人-亚洲蜜臀人妻中文字幕-国产一区二区内部视频| 日本淫片一区二区三区-精品亚洲人伦一区二区三区-精品成人短视频在线观看-日韩亚州欧美国产另类| 亚洲精品av一区二区日韩-日韩偷拍精品一区二区三区-亚洲欧美熟妇久久久久久-久草视频福利在线观看| 久久精品国产亚洲av麻豆看片-内射后入高潮在线视频-亚洲精品一区三区三区在线-亚洲乱码一区二区三区视色| 青青草原av青青草原-美日韩精品一区二区三区-中文字幕日本乱码在线-久久热久久热在线视频| 国产一区二区三区四区在线播放-国语精品国内自产视频-可以免费看黄的网久久-久久久亚洲av三吉彩花| 日韩美女一区二区三区不卡顿-日本女优搜查官中文字幕-国产精品中文字幕自拍-欧美日韩天天干夜夜操| 激情视频在线观看国产-九九热九九色在线观看-亚洲激情午夜av在线-亚洲中文系列在线观看| 亚洲av成人精品日韩一区二区-日本50岁成熟丰满熟妇-欧美日韩久久婷婷一区二区-亚洲成人天堂在线观看| 99久久精品视频在线-日韩精品免费完整版视频-精品久久久久久久亚洲婷婷综合-久久精品国产亚州av| 亚洲国产高清一区二区三区不卡-亚洲综合小综合中文字幕-亚洲黄色成人av在线-日韩一区二区三区av观看| 亚洲黄色一级二级三级在线观看-成年人手机视频在线观看-都市激情校园春色亚洲一区-九九久久免费视频一区二区三区| a在线观看视频在线播放-81精品人妻一区二区三区蜜桃-国产午夜福利片一级做-在线观看亚洲视频一区二区| 成年人午夜黄片视频资源-少妇高潮喷水在线观看-色网最新地址在线观看-人人爽人人澡人人人人妻那u还没| 国产精品一区在线观看网址-亚洲国产日韩精品理论在线-在线播放视频在线观看视频-黄色片三级三级免费看| 免费人成视频在线播放-成人级a爱看片免费观看-激情偷乱在线视频播放网-激情综合网激情综合网激情| 国产熟女av中文字幕-国产星空传媒视频在线观看-久久精品在线精品视频-亚洲国产av卡一卡二| 日韩有码中文字幕在线视频-草草影院国产在线观看-日韩中文字幕有码午夜美女-亚洲第二十页中文字幕| 日韩精品一区二区蜜桃免费视频-色综合视频一区二区三区-欧美一级黄片视频在线播放-国产精品视频一区二区色戒| 人妻中文字幕一区二区三区-国产精品丝袜久久亚洲不卡-久久伊人精品色婷婷国产-日韩中精品文字幕在线一区| 日本一区二区三区三级视频-亚洲国产精品一区二区久-蜜桃视频网站免费观看-在线视频中文字幕一区二区| 国产精品一线天粉嫩av-亚洲视频在线观看一区二区三-深夜男人福利在线观看-中文字幕国产精品第一页| 久久精品一区二区三区激情-男人天堂手机成人在线-激情五月色婷婷中文字幕-国产精品久久久久久人四虎| 国产在线精品免费一区二区三区-国产精品毛片内在线看-久久精品国产亚洲av不卡性色-日韩中文不卡在线视频| 国产亚洲一区二区三区综合片-亚洲天堂日韩精品在线-有码视频在线观看日本专区-亚洲精品成人福利在线| 99久久亚洲综合网精品-久久热福利视频在线观看-日韩av人妻中文字幕-日本一区二区三区视频在线播放| 熟妇久久人妻中文字幕-国产精品久久久久精品三级人-亚洲蜜臀人妻中文字幕-国产一区二区内部视频| 久久精见国产亚洲av高清热-国产一区国产二区亚洲精品-99久久精品视频一区二区-91精品亚洲欧美午夜福利| 天天色天天干天天操天天射-日本午夜一区二区福利激情-国产精品一区中文字幕在线-欧美性生活网站视频观看| 国产人妻熟女呻吟在线观看-国产成人免费视频观看-国产久久热这里只有精品-中文字幕女同女同女同|