色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Low-pressure hot isostatic pressing (HIP) is a new sintering process developed in Western developed countries in the 1980s, which combines vacuum sintering and hot isostatic pressing in a single device to complete the process in one step. We have utilized low-pressure hot isostatic pressing technology to manufacture recycled mining carbide, which effectively improves the mechanical and physical properties of the alloys, resulting in a virtually pore-free microstructure and excellent rock drilling performance on-site.

Hot Isostatic Pressing

Experimental Method

Recycled WC powder with a Fisher particle size of 3.00~10.00 μm and normal WC powder with a Fisher particle size of 10.00~18.00 μm were mixed with Co powder or Ni powder with a loose packing density of 0.5~0.7g/cm3 to prepare mixtures of grades YJ1, YJ2, N309, etc. The mixtures were shaped, degummed, and then sintered in a domestically produced horizontal vacuum furnace and a low-pressure hot isostatic pressing furnace manufactured by a German specialized equipment company. The low-pressure hot isostatic pressing process is as follows: loading → vacuum pumping → heating → maintaining sintering temperature → charging argon and pressurizing → maintaining pressure and temperature → cooling and depressurizing → unloading. Electron microscopy was used for metallographic analysis, and the linear shrinkage and shrinkage rate of the samples during the sintering process were measured by the low-pressure hot isostatic pressing sintering furnace to analyze the densification process. The test alloys were made into D43×22 straight horseshoe bits for calibration tests in mining operations.

Experimental Results

Comparison of Properties

Between Low-Pressure Hot Isostatic Pressing Treatment of Recycled Material and Vacuum Sintering Treatment of Normal Material. The two types of tungsten carbide powders, recycled and normal, were processed using the same manufacturing process, undergoing vacuum sintering and low-pressure hot isostatic pressing treatment, respectively. The results are listed in Table 1.

What's Low-Pressure Hot Isostatic Pressing of Recycled Mining Carbide? 2

As can be seen from Table 1, the porosity of the alloy treated with low-pressure hot isostatic pressing using recycled WC powder is even lower than that of the normal alloy, and its performance has been significantly improved, with an increase in the transverse rupture strength value; moreover, the elimination of type B pores ranging from 10 to 25 μm indicates the intrinsic relationship between the reduction in porosity and the increase in transverse rupture strength, while also confirming the capability of low-pressure hot isostatic pressing sintering to eliminate pores in recycled alloys.

Low-Pressure Hot Isostatic Pressing Alloy Linear Shrinkage Test

The linear shrinkage and shrinkage rate of the samples during the sintering process in the low-pressure hot isostatic pressing furnace were measured as shown in the attached figure. The alloy undergoes two stages: vacuum sintering and hot isostatic pressing. The macroscopic pores are eliminated during the vacuum sintering stage, and the microscopic pores are eliminated during the hot isostatic pressing stage to achieve the final densification level.

Comparison of On-site Rock Drilling Effects

The two types of tungsten carbide?powders, recycled and normal, were made into alloys of grades YJ1, YJ2, N309, etc., and calibration tests were conducted at the Taolin Lead-Zinc Mine. The results are listed in Table 2.

What's Low-Pressure Hot Isostatic Pressing of Recycled Mining Carbide? 3

The rock drilling calibration indicates that high-quality mining carbide?can be produced from recycled WC powder through low-pressure hot isostatic pressing treatment, and their performance is comparable to that of mining carbide?made from normal tungsten carbide.

What's Low-Pressure Hot Isostatic Pressing of Recycled Mining Carbide? 4

Result Analysis

Process Characteristics of Low-Pressure Hot Isostatic Pressing for Eliminating Pores in Recycled carbide

The densification of carbide?primarily occurs during sintering, where the plastic flow of the binder phase and the rearrangement of WC grains are driven by surface tension. However, under atmospheric or vacuum sintering, a certain amount of porosity always remains after shrinkage densification is complete; this is because when pores are sealed, the stress inside the pores reaches equilibrium with the surface tension of the pores. Additionally, due to the mixed composition of recycled materials and the presence of more harmful impurities, large pores and voids are easily formed during vacuum sintering, leading to issues such as low alloy density, low fracture strength, significant hardness variations, and severe contamination of the alloy. Applying a certain pressure can promote further flow of the binder phase and rearrangement of WC grains, thereby greatly reducing or even completely eliminating these pores or voids.

Study on the Densification Mechanism of Low-Pressure Hot Isostatic Pressing

The change curve of the linear shrinkage rate of recycled carbide?samples during low-pressure hot isostatic pressing sintering is shown in the attached figure. There are three peaks on the shrinkage rate curve: Peak A appears at a sintering temperature of 1200°C, which is solid-phase sintering. Due to the low yield point of the binder phase, plastic flow occurs under a small external force. The flow of the binder metal changes the contact situation between powder particles, causing the carbide?particles to move and come closer together. Peak B appears during the liquid-phase sintering process at 1340°C, where WC particle rearrangement, solution precipitation, and skeleton formation result in significant shrinkage of the sintered body, and macroscopic pores are eliminated during the vacuum sintering process of low-pressure hot isostatic pressing. Peak C appears at the beginning of the pressurization stage, where the rise in pressure eliminates the micro-pores in the product. However, with the extension of the pressure maintenance time, no new shrinkage peak appears in the product.

 

??züm

(1) The physical and mechanical properties of the recycled alloy treated by low-pressure hot isostatic pressing are superior to those of alloys manufactured by conventional processes, with a significant reduction in porosity and the elimination of type B pores.

(2) The recycled alloy treated by low-pressure hot isostatic pressing does not fall short of normal alloys in on-site rock drilling tests, and its wear resistance is even improved.

(3) The mechanism by which low-pressure hot isostatic pressing improves the performance of the alloy is mainly the elimination of large-sized pores and the reduction in porosity.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

免费观看国产裸体视频-久久亚洲精精品中文字幕早川悠里-99精品国产一区二区青青牛奶-久久精品成人av免费观看| 爆操美女屁股在线观看免费-亚洲国产成人久久综合-亚洲一区二区免费中文麻豆-青青青青草原在线观看| 国产黄色带三级在线观看-国产精品色内内在线观看播放-一区二区三区视频在线观看-精品一区三区视频在线观看| 欧美av黄片在线观看-黄片国产一级片在线观看-国产精品黄色精品黄色大片-一区二区三区国产日本欧美| 亚洲一区二区欧美日韩-亚洲精品四虎在线观看-国产夫妻在线视频播放-激情人妻中文字幕中字福利在线| 日韩熟女人妻中文字幕-亚洲视频自拍偷拍免费-91国内精品久久精品一本-日韩高清一区二区不卡视频| 国产精品久久中文字幕网-国产亚洲av无色肉丝网站-自拍偷拍亚洲精品偷一-日本久久一区二区三区| 九九久久只有精品视频-精品女厕偷拍一区二区三区-欧美超乱碰精品综合在线-av中文字幕少妇人妻| 中美高清在线观看av-精品视频中文字幕天码-日韩高清一二三区在线观看-精品人妻91一区二区三区| 四虎成人免费永久视频-婷婷激情五月天久久综合-亚洲欧美自拍偷拍丝袜-日韩精品午夜视频一区二区三区| 国产一区二区三区四区在线播放-国语精品国内自产视频-可以免费看黄的网久久-久久久亚洲av三吉彩花| 国产av蜜臀一区二区三区野战-欧美精品久久精品推荐-亚洲有吗黄色日韩视频-中文字幕在线乱码人妻| 日韩av观看一区二区三区四区-美丽的蜜桃3在线观看-久久人妻少妇嫩草av-欧美亚洲另类久久久精品| 国产美女口爆吞精服务-亚洲无人区码一码二码三码-久久精品99国产精品最新-日本少妇激情在线视频| 国产性色av综合亚洲不卡-中文字幕一区二区在线资源-久久四十路五十路六十路-91九色在线观看免费| 中文字幕亚洲天堂第一页-国产午夜福利在线视频-亚洲精品中文字幕女同-亚日韩精品一区二区三区| 日本一区二区三区高清视频-九九九热在线观看视频-亚洲综合自拍偷拍人妻丝袜-亚洲精品国产二区三区在线| 色人阁免费在线视频观看-中文字幕中文字幕日韩一区-91麻豆成人精品国产-亚洲精品成人剧情在线观看| 亚洲精品一区二区三区麻豆-国产精品小视频在线看-亚洲国产成人av第一二三区-国产不卡一区二区三区免费视频人| 成年深夜在线观看视频-成人国产av精品在线-av乱亚洲一区二区三区-亚洲精品综合一区二区在线| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 日韩欧美国产亚洲中文-亚洲国产av第一福利网-亚洲欧洲日韩一区二区三区-91精品国产福利线观看久久| 亚洲熟妇激情视频99-丝袜美腿诱惑av网站在线观看-欧美国产综合激情一区精品-激情综合网激情五月我去也| 99久久国产自偷自自偷蜜月-日韩熟女激情中文字幕-亚洲狼人社区av在线观看-四虎成人精品国产永久| 人妻精品一区二区视频免费-99热视频免费在线观看-亚洲av第一第二第三-乱码人妻精品一区二区三区| 风韵丰满熟妇老熟女呻吟-亚洲国产丝袜久久久精品一区二区-久久午夜精品一区二区三区-人妻视频精品一区二区三区| av网站在线观看网站-最新国产欧美精品91-国产一区二区三区在线导航-日韩高清在线中文字幕一区| 最近中文字幕国产精品-国产一级片黄片免费观看-日本一区二区三区日韩欧美-亚洲一区电影网站在线观看| 亚洲欧美日韩另类第一页-亚洲欧美日本综合久久-亚洲一本之道高清在线观看-不卡在线一区二区三区视频| 中文字幕在线成人大片-日本一区二区在线视频播放-精品在线亚洲一区二区三区-在线免费观看播放视频| 国产精品大片中文字幕-国产丝袜av一区二区免费-亚洲av巨作一级精品-国产成人综合亚洲欧美天堂| 日韩欧美国产在91啦-激情偷拍自拍在线观看-一本大道久久香蕉成人网-亚洲精品中文字幕观看| 四十如虎的丰满熟妇啪啪-国产三级电影在线免费看-国产综合色香蕉精品五夜婷-免费观看日韩三级视频| 日本一区二区三区三级视频-亚洲国产精品一区二区久-蜜桃视频网站免费观看-在线视频中文字幕一区二区| 一本久道热线在线视频-精品人妻在线中文字幕-亚洲av成人av天堂色多多-国产牛奶粉哪个品牌好| 亚洲黄色一级二级三级在线观看-成年人手机视频在线观看-都市激情校园春色亚洲一区-九九久久免费视频一区二区三区| 91精品在线播放黑丝后入-97免费在线播放视频-av网站天堂网国产av-亚洲熟妇乱色一区二区三区| 成人一区二区三区激情视频-久久一区二区免费蜜桃-钢琴考级三级咏叹调视频-亚洲性感毛片在线视频| 日本大黄高清不卡视频在线-亚洲色图视频在线观看免费-国内精品自拍视频在线观看-av免费在线观看看看| 精品人妻在线一区二区三区-国内av在线免费观看-亚洲av影片一区二区三区-久久精品女同亚洲女同13| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线|