色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Semente karbür, 9 ?e?it IVA, VA metal karbürden ve Fe, CO ve Ni gibi grup ve demir grubu metallerden olu?an toz metalurjisi ile yap?lan bir ala??m türüdür. Karbür faz? ala??ma yüksek sertlik ve a??nma direnci verirken, ba?lay?c? faz ala??ma belirli bir gü? ve tokluk verir.

According to the composition, cemented carbides can be divided into five categories: tungsten carbide based cemented carbides, titanium carbide based cemented carbides, coated cemented carbides, steel based cemented carbides and other cemented carbides.

According to its application scope, cemented carbide can be divided into four categories: cemented carbide cutting tools, cemented carbide molds, cemented carbide measuring tools and wear-resistant parts, and cemented carbide for mining and petroleum geology.A Brief Intro about Cemented Carbide Brazing 2

Generally speaking, WC Co cemented carbide is widely used in cutting tools, metal drawing dies, stamping dies, measuring tools of cast iron, non-ferrous metals and their alloys, as well as wear-resistant parts for mining machinery and geological exploration; WC Ti Co alloys are mainly used in steel cutting; WC TiC – (NBC) – Co alloys are mainly used for cutting high hardness parts.

Although other types of cemented carbides have made great progress in recent years and achieved great success in some special applications, WC Co series cemented carbides (i.e. YG type) have excellent comprehensive mechanical properties, which are the most widely used and the largest amount of cemented carbides in industry.

A Brief Intro about Cemented Carbide Brazing 3


Problems in brazing of cemented carbide

The brazing property of cemented carbide is poor. This is because the carbon content of cemented carbide is high, the surface without cleaning often contains more free carbon, which hinders the wetting of solder. In addition, cemented carbide is easy to oxidize and form oxide film at brazing temperature, which also affects the wettability of solder. Therefore, the surface cleaning before brazing is very important to improve the wettability of solder on cemented carbide. If necessary, the surface can be plated with copper or nickel.

Another problem in cemented carbide brazing is that the joint is easy to crack. This is because its coefficient of linear expansion is only half of that of low carbon steel. When the cemented carbide is brazed with the matrix of this kind of steel, great thermal stress will be produced in the joint, resulting in the cracking of the joint. Therefore, when brazing cemented carbide with different materials, anti cracking measures should be taken.

Surface treatment before brazing

Before brazing, the oxide, grease, dirt and paint on the surface of the workpiece must be carefully removed, because the melted solder cannot wet the surface of the part that has not been cleaned, nor can it fill the joint gap. Sometimes, in order to improve the brazeability of base metal and the corrosion resistance of brazed joint, the parts must be pre coated with a certain metal layer before brazing.

1. The oil can be removed by organic solvent

Commonly used organic solvents are alcohol, carbon tetrachloride, gasoline, trichloroethylene, dichloroethane and trichloroethane. In small batch production, it can be cleaned by immersing the zero ash in organic solvent. Degreasing in steam of organic solvent is widely used in mass production. In addition, cleaning in hot alkali solution can also get satisfactory results. For example, steel parts can be dipped into 10% caustic soda solution at 70-80 ℃ for degreasing, copper and copper alloy parts can be cleaned in a solution of 50g trisodium phosphate, 50g sodium bicarbonate and 1L water, and the solution temperature is 60-80 ° C. Parts can also be degreased in detergent and cleaned carefully with water after degreasing. When the part surface can be completely wetted by water, it indicates that the surface grease has been removed. For the small parts with complex shape and large quantity, ultrasonic cleaning can also be used in the special tank. Ultrasonic oil removal efficiency is high.

2. Remove oxide

Before brazing, the oxide on the surface of parts can be removed by mechanical method, chemical etching method and electrochemical etching method. When cleaning by mechanical method, it can use file, metal brush, sandpaper, grinding wheel, sand blasting to remove the oxide film on the surface. The file and sandpaper cleaning are used for single piece production, and the groove formed during cleaning is also conducive to the wetting and spreading of solder. Grinding wheel, metal brush and sand blasting are used in batch production. The surface of aluminum, aluminum alloy and titanium alloy should not be cleaned mechanically.

3. Metal plating on base metal surface

The main purpose of coating metal on the base metal surface is to improve the solderability of some materials and increase the wettability of solder to the base metal; Prevent the base metal and solder interaction on the joint quality of adverse effects, such as to prevent cracks, reduce the interface of brittle intermetallic compounds; As a solder layer, to simplify the assembly process and improve productivity.

Brazing materials

1. Pure copper, copper zinc and silver copper are usually used for brazing tool steel and cemented carbide

Pure copper has good wettability to all kinds of cemented carbides, but it needs to be brazed in the reducing atmosphere of hydrogen to get the best effect. At the same time, due to the high brazing temperature, the stress in the joint is large, which leads to the increase of crack tendency. The shear strength of the joint brazed with traditional pure copper is about 150MPa, and the joint has high plasticity, but it is not suitable for high temperature work.

Copper zinc solder is the most commonly used solder for brazing tool steel and cemented carbide. In order to improve the wettability of solder and the strength of joint, alloy elements such as Mn, Ni and Fe are often added to solder. For example, the addition of W (MN) 4% in b-cu58znmn makes the shear strength of cemented carbide brazed joint reach 300-320 MPa at room temperature and 220-240 MPa at 320 ° C. By adding a small amount of CO on the basis of b-cu58znmn, the shear strength of the brazed joint can reach 350 MPa, and it has high impact toughness and fatigue strength, which can significantly improve the service life of cutting tools and rock drilling tools.

The melting point of silver copper solder is low, and the thermal stress of brazed joint is small, which is helpful to reduce the cracking tendency of cemented carbide during brazing. In order to improve the wettability of solder and increase the strength and working temperature of joint, alloy elements such as Mn and Ni are often added to solder. For example, the wettability of b-ag50cuzncdni solder to cemented carbide is excellent, and the brazed joint has good comprehensive properties.

In addition to the above three types of solders, Mn based and Ni based solders, such as b-mn50nicucrco and b-ni75crsib, can be used for cemented carbides working above 500 ° C and requiring high joint strength. For the brazing of high speed steel, the special brazing filler metal with brazing temperature matching with quenching temperature should be selected. The brazing filler metal can be divided into two types: one is ferromanganese type, which is mainly composed of ferromanganese and borax. The shear strength of the brazed joint is generally about 100MPa, but the joint is prone to crack; the other is special copper alloy containing Ni, Fe, Mn and Si, The joint brazed with it is not easy to crack, and its shear strength can be increased to 300mpa.

A Brief Intro about Cemented Carbide Brazing 4


2. Flux and shielding gas

The choice of flux should match with the base metal and solder. When brazing tool steel and cemented carbide, the main flux used is borax and boric acid, and some fluorides (KF, NaF, CaF2, etc.) are added. Fb301, fb302 and fb105 fluxes are used for copper zinc solder, and fb101-fb104 fluxes are used for silver copper solder. Borax flux is mainly used for brazing high speed steel with special filler metal.

In order to prevent oxidation of tool steel during brazing heating and avoid cleaning after brazing, gas shielded brazing can be used. The protective gas can be inert gas or reducing gas, and the dew point of the gas should be lower than – 40 ℃. Cemented carbide can be brazed under the protection of hydrogen, and the dew point of hydrogen should be lower than – 59 ℃.

brazing process

The tool steel must be cleaned before brazing, and the machined surface does not need to be too smooth to facilitate the wetting and spreading of material and flux. Before brazing, the surface of cemented carbide should be sandblasted, or polished with silicon carbide or diamond grinding wheel to remove excessive carbon, so as to be wetted by solder during brazing. The cemented carbide containing titanium carbide is difficult to be wetted. The wettability of strong solder can be increased by coating copper oxide or nickel oxide paste on its surface and baking it in reducing atmosphere.

It is better to braze carbon tool steel before or at the same time of quenching process. If brazing is carried out before the quenching process, the solidus temperature of the solder used should be higher than the quenching temperature range, so that the weldment will still have enough strength when reheated to the quenching temperature without failure. When brazing and quenching are combined, solder with solidus temperature close to quenching temperature should be selected.

The composition range of alloy tool steel is very wide. According to the specific steel grade, the appropriate brazing filler metal, heat treatment process and the technology of combining brazing and heat treatment process should be determined, so as to obtain good joint performance.

The quenching temperature of high speed steel is generally higher than the melting temperature of silver copper and copper zinc solder, so it is necessary to carry out quenching before brazing and brazing during or after secondary tempering. If quenching must be carried out after brazing, only the special brazing filler metal mentioned above can be used for brazing. When brazing high-speed steel tools, it is more appropriate to use coke oven. When the solder melts, take out the tool and immediately pressurize, extrude the excess solder, then oil quench, and then temper at 550 ~ 570 ℃.

When brazing cemented carbide blade with steel tool bar, it is better to increase the gap between the brazing seam and apply plastic compensation gasket in the brazing seam, and cool slowly after welding, so as to reduce the brazing stress, prevent cracks and prolong the service life of cemented carbide tool assembly.

Cleaning after brazing

Most of the flux residue can corrode the brazed joint and hinder the inspection of the brazed joint, so it needs to be cleaned up. The flux residue on the weldment is firstly washed with hot water or general deslagging mixture, and then pickled with appropriate pickling solution to remove the oxide film on the base tool bar. However, be careful not to use nitric acid solution to prevent corrosion of brazing metal. The residue of organic soft flux can be wiped or cleaned with gasoline, alcohol, acetone and other organic solvents; The residues of zinc oxide and ammonium chloride are highly corrosive, so they should be cleaned in 10% NaOH solution, and then cleaned with hot water or cold water. The residues of borax and boric acid flux are generally solved by mechanical method or long-time soaking in boiling water.

Inspection of brazing quality

The inspection methods of brazed joint can be divided into non-destructive inspection and destructive inspection. The main methods of NDT are as follows:

Appearance inspection

Staining test and fluorescence test. These two methods are mainly used to check the micro cracks, air holes, porosity and other defects that can not be found by appearance inspection.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

亚洲欧美日本成人在线-伦理视频在线观看一区二区三区-日韩精品中文字幕人妻-四虎永久地址在线观看| 日本成熟人妻在线看片-亚洲国语精品激情在线-欧美性生活之欧美日韩-成人黄色av在线观看| 日本岛国三级黄色录像-日韩久久成人免费电影-中文字幕日韩专区一区二区-国产成人大片在线播放| 国产精品一区二区蜜桃视频-四十路五十路熟女丰满av-成人av天堂中文在线-亚洲精品成人国产在线| 国产一级亚洲一级一区-国产精品一亚洲av日韩av-日韩高清有码中文字幕-久久国产精品免费一区二区三区| 日本区三区免费精品视频在线播放-日本经典中文字幕人妻-成人在线播放视频观看-少妇特撒尿偷拍免费观看| 偷拍一区二区三区视频播放器-亚洲欧洲日产韩国综合-国产精品久久精品亚洲-国产乱淫av麻豆国产| 久久亚洲中文字幕少妇毛片-91蜜臀精品国产自偷在线-日韩av在线播放天堂网-亚洲在线精品一区二区三区| 成人在线永久免费视频-日本理论电影一区二区三区-中文字幕成人av电影-91麻豆精品国产91久久麻豆| 九九热在线免费视频精品-偷拍日本美女厕所尿尿-深夜老司机福利在线观看-偷拍精品视频日本久久| 91久久国产综合蜜桃-深夜激情在线免费观看-免费观看国产在线视频不卡-天堂在线精品免费亚洲| 男人天堂色男人色偷偷-国产内射在线干得爽到语无次-国产成人亚洲欧美二区综合-精品欧美高清视频观看| 亚洲熟妇av熟妇在线-国产精品午夜福利清纯露脸-粉嫩av在线播放一绯色-日产精品久久久久久蜜臀| 成人在线自拍偷拍视频-国产剧情av中文字幕-久久国产劲爆内射日本-劲爆欧美中文字幕精品视频| 免费十八禁一区二区三区-国产精品一区二区三区99-在线一区二区三区男男视频观看-精品欧美一区二区三区人妖| 亚洲天堂久久中文字幕-高清国产一级片免费看-伊人狼人综合日日夜夜-手机看片高清国产日韩| 国产高清丝袜av综合-精品亚洲一区二区在线-国产丝袜大长腿精品丝袜美女-日本熟女午夜福利视频| 无套内射在线免费观看-亚洲日本va中文字幕久-日韩免费人妻av一区二区三区-热久久国产最新地址获取| 熟女人妻中文字幕在线视频-91久久成人精品探花-国产精品黄色一区二区三区-99精品国产99久久久久97| 国产熟女露脸91麻豆-自拍视频在线观看后入-麻豆映画视频在线观看-国产视频男女在线观看| 男女公园上摸下揉视频-日本精品视频一二区-激情久久综合久久人妻-伊人成人综合在线视频| 加勒比大香蕉优优久久-国产av精品国语对白国产-亚洲一区二区免费日韩-国产一级内射无挡观看| 日韩色视频免费观看网站大全-免费中文对白国产操片-国产农村妇女一页二页-欧美三级午夜理伦三级在线| 国产精品成久久久久久三级四虎-亚洲成人av在线高清-国产精品一区二区三区自拍-欧美午夜激情视频网站| 日本中文字幕人妻在线视频-中文字幕亚洲中文字幕亚洲-欧美午夜福利天堂视频-日韩人妻中文字幕精品| 亚洲精品中文字幕播放-9l精品人妻中文字幕色-亚洲不卡一区二区在线看-97精品国产在线观看| 国产激情久久久久成熟影院-成人午夜免费在线视频-亚洲中文字幕成人综合网-色噜噜精品视频在线观看| 99热亚洲熟女少妇一区二区-久草福利免费在线视频观看-人妻丰满熟妇av一区二区-日韩高清亚洲一区二区| 日本一区二区三区欧美精品-农村少妇真人毛片视频-亚洲av乱码专区国产乱码-跨年夜爆操极品翘臀日韩| 狠狠操夜夜操天天干天天-午夜一级视频在线免费观看-我要看欧美一级黄色录像-91嫩草国产亚洲精品| 日韩精品极品免费观看-91久久精品国产成人-成人亚洲国产精品一区不卡-免费在线播放韩国av| 91高清精品一区在线观看-成人黄色大片免费网站-国产成人综合亚洲另类-气质女人呻吟内射在线观看| 大奶人妻丝袜中出在线-亚洲一区久久中文字幕-国产成人av剧情自拍网站-嫩草伊人久久精品少妇av| 免费人成视频在线播放-成人级a爱看片免费观看-激情偷乱在线视频播放网-激情综合网激情综合网激情| 精品国产人成亚洲区中文久久-欧美日韩夫妻性生活视频-亚洲欧美日韩高清专区一-国产精品无套内射后插| 日本精品视频免费在线-国产精品自在在线影院-日韩午夜一区二区三区-国产精品中文第一字幕| 国内国产精品国产三级-美女性爽潮喷白丝小仙女-国产精品自拍露脸在线-国产精品亚洲综合日韩| 蜜臀一区二区在线观看视频-亚洲一区二区国产精品视频-国内精品国产三级国产a久久-婷婷久久亚洲中文字幕| 国产精品一区成人精品果冻传媒-日韩精品一区二区三区不长视频-欧美日韩不卡在线视频-99久久热视频在线观看| 一区二区三区国产精品女人-日本成人在线视频91-国产午夜福利在线剧场-欧美日韩激情系列在线观看| 激情视频在线观看国产-九九热九九色在线观看-亚洲激情午夜av在线-亚洲中文系列在线观看|