色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The so-called powder metallurgy method is to make a powder of the raw material of the alloy to be produced, and then mix the powders in an appropriate amount and pressurize and solidify into a certain shape. These powder pieces will be placed in a reducing atmosphere (for example, hydrogen), heated and sintered to form an alloy. This is a metallurgical method that is completely different from the previous casting method.
The sintering referred to herein can be simply defined as the promotion of agglomeration of metal crystal grains by the action of pressurization and warming. We apply a certain amount of pressure to the powder with the alloy composition to compact it. At high temperatures, the intimately contacted powders stick to each other and gradually fill the voids to form a high density alloy. The heating temperature at this time is the melting temperature of the low melting component in the alloy component. Thus, the alloy ingot is sintered at a temperature below the melting point of the entire powder component. This method is similar to the method of combining the two processes of smelting and casting, and its properties are close to those of cast alloys. But from a metallographic point of view, it should be a branch of alloy castings.
Cemented carbide is manufactured by this powder metallurgy method. Generally, powders such as tungsten, carbon, cobalt, titanium, and cerium are used for batch mixing, and then pressed and sintered to form an alloy. Thus, the product of this metallurgical process is also referred to as a sintered cemented carbide or a cemented carbide alloy. In recent years, powder metallurgy methods have developed very rapidly. Cemented carbides, oil-bearing alloys, electrical contacts, metal bonded diamond wheels, and special decorative metal products are all manufactured by this powder metallurgy method.
For example, the pressed semi-finished product of 30 mm in length is now heated to 1000-1400 ° C. The volume change of the pressed product at about 30 ° C for about 5 minutes is shown in Figure 2-2. Shrinkage generally begins at 1150 ° C. In the case of 6% Co, the shrinkage proceeds very regularly, ending at approximately 1320 ° C. In the case of 10% Co, at 1180-1200 ° C, the contraction is temporarily interrupted. As the temperature continues to rise, the shrinkage proceeds rapidly, and when the temperature reaches 1300 ° C, it tends to balance.

The Principle of Powder Sintering in Metallurgy 1

Thereafter, since the number of contact points of the particles and the contact area is remarkably increased, each of the particles is in a state of easily releasing excess energy (free energy) held by itself. Thus, from about 200 ° C, cobalt begins to diffuse, at which point the first stage of sintering begins. When the temperature rises again, β-Co is converted to γ-Co at around 490 °C. At 600 ° C, carbon begins to diffuse into the cobalt and becomes a mass solution. The finer the tungsten carbide particles, or the better the cobalt-coated tungsten carbide, the faster this diffusion phenomenon will occur. This diffusion has the same effect as applying strong compressive pressure to the compact. However, during the temperature rise, almost no liquid phase is observed at this temperature.
However, near this temperature, the bending strength is significantly increased. Usually, a hardness alloy of 6% cobalt is sintered at a temperature of about 1400 ° C. At this temperature, WC gradually dissolves into the liquid phase, and particularly fine WC dissolves rapidly, and the large WC has large surface energy due to the sharp corner portion. It is round after being dissolved. As a result, the liquid phase portion becomes more and more, and as the reaction progresses toward the direction in which the free energy decreases, the alloy shrinks and the pores gradually decrease. On the other hand, in the portion where the tungsten carbide particles are in contact with each other, the phenomenon of volume diffusion, particularly surface diffusion, continues to occur. There is also the possibility that carbide particles will bond with each other. Further, WC may also locally precipitate from the liquid phase at a portion where the tungsten carbide contacts each other. As a result, various reasons have prompted the growth of tungsten carbide grains, resulting in a dense alignment. However, the temperature is further increased, and when it exceeds 1600 ° C, gas is generated inside the product, causing expansion of the crystal arrangement. It is said that the gas is generated by the presence of impurities such as SiO2. On the contrary, if the temperature is lowered, the WC particles dissolved in the liquid phase are precipitated on the WC particles having small surface energy. Even after the liquid phase disappears into a solid state, the tungsten carbide continues to separate until only 1% remains.

The Principle of Powder Sintering in Metallurgy 2

During the sintering process, the tungsten carbide present in the form of a melt in the cobalt moves a small distance and is bonded to the undissolved tungsten carbide, so that uneven structure such as a cast alloy is not formed. The steel containing a large amount of pearlite is aged and hardened by the precipitation of the carbon melt of the alpha iron. In contrast, during the sintering process, the WC particles act as effective nucleation, so there is no age hardening phenomenon, so that the structure is uniform and very stable, not sensitive to heat treatment, and the hardness does not change even at relatively high temperatures. Figure 2-3 shows the high-temperature hardness of tool steel, high-speed steel, cast alloy, stellite alloy (Co-Cr-W), and WC+Co cemented carbide.

Leave a Reply

Your email address will not be published. Required fields are marked *

99久久精品视频在线-日韩精品免费完整版视频-精品久久久久久久亚洲婷婷综合-久久精品国产亚州av| 国产成人啪午夜精品网站-国产乱码精品一区二区三区-男人天堂网av一区二区三区四区-亚洲第一区二区精品三区在线| 少妇被躁潮到高潮无人码-日本欧美一级二级三级不卡-国产一区视频二区视频-亚洲无人区码一二三区别| 女人的天堂av免费看-亚洲欧洲美洲丰满少妇av-精品国产av一区二区二区-性生活视频免费观看在线| 九九热久久这里有精品视频-2020亚洲欧美日韩在线-国产精品久久无遮挡影片-亚洲国产高清在线不卡| av天堂一区二区三区在线观看-一区二区三区在线观看蜜桃-激情在线免费观看国产视频-国产精品国产三级国产三不| 国产成人精品一区二区日出白浆-亚洲女优大片在线观看-明星换脸av一区二区三区-四虎影院国产精品久久| 久热99在线视频免费观看-黄片视频在线免费观看国产-国产精品av国产精华液-av在线男人的免费天堂| 老妇肥熟凸凹丰满刺激-九九热最新视频免费看-亚洲中文字幕乱码视频-国产亚洲精品欧洲在线视频| 91亚洲综合成人在线-久久精品亚洲av少妇-日本av一区在线视频-9国产精品久久久久麻豆| 欧美日韩在线有码中文-亚洲美女一区二区暴力深喉吞精-亚洲av日韩一区二区三区-国产激情视频在线观看播放| 翔田千里的五十路六十路-精品国产综合一区二区三区-久久婷婷色中文字幕免费高清-国产精品伦理视频一区二区| 蜜桃视频大全免费观看-国产高清不卡一区二区-亚洲av综合av东京热三区-无套内射激情国产av| 黑人精品视频一区二区三区-在线播放免费av大片-在线免费观看日韩精品-日本av在线观看一区二区三区| 日本a亚洲中文字幕永远-美女极度色诱视频国产-国产熟女另类激情在线-高潮少妇高潮少妇av| 中文国产成人精品久久一-亚洲一区二区精品视频网站-在线深夜羞羞福利视频-麻豆视频传媒免费入口| 91精品在线播放黑丝后入-97免费在线播放视频-av网站天堂网国产av-亚洲熟妇乱色一区二区三区| 国产很黄免费观看久久-亚洲变态另类一区二区三区-欧美在线免费观看黄片-成人av不卡在线播放| 拉风色国产精品一区二区三区-av一级不卡手机在线观看-亚洲欧美日韩国产色另类-青青草伊人视频在线观看| 在线看片国产福利你懂得-av中文字幕精品一本久久中文字-亚洲一区二区三在线高清真人-日韩在线不卡视频免费看| 亚洲少妇视频免费观看高清-亚洲午夜福利在线播放-偷拍偷窥精品视频在线-黄色大片国产免费永久网站| 国产欧美日韩激情免费-日韩av不卡免费观看-一本色道久久88综合亚洲精品-av天堂有色在线观看| 亚洲av色福利天堂在线观看-人妻少妇午夜福利视频-男人的天堂av在线视频-国内揄拍国产精品人妻一区二区| 青草黄色成人中文视频-国产剧情av在线大学生-日韩av在线一卡二卡三卡-国产成人午夜福利影院| 日本亚洲午夜福利视频-欧美日韩高清精品一区二区-av成人免费在线视频-日韩精品一区二区三区费暖暖| 天堂亚洲国产av成人-野花视频在线观看免费-在线播放h视频的网站-僧侣交合的夜晚在线观看| 亚洲视频一区二区久久-亚洲欧美日韩精品中文乱码-亚洲尤物在线视频观看-欧美熟妇视频一区二区三区| 四十如虎的丰满熟妇啪啪-国产三级电影在线免费看-国产综合色香蕉精品五夜婷-免费观看日韩三级视频| 欧美日本国产一区二区三区-亚洲精品成人午夜在线观看-国产精品一二三在线看-国产成人传媒在线播放| 国产精品一区二区小视频-欧美亚洲国产精品激情在线-日韩免费视频一区二区三区视频-精品亚洲国产成av人片传媒| 五月激情综合网俺也去-美欧日韩一区二区三区视频-午夜看片福利在线观看-色老板在线免费观看视频日麻批| 国产老熟女精品视频大全免费-精品丰满熟女一区二区蜜桃-亚洲自国产拍性生活自拍-中文字幕熟女激情50路| 久热99在线视频免费观看-黄片视频在线免费观看国产-国产精品av国产精华液-av在线男人的免费天堂| 亚洲日本精品国产第一区二区-国产一级二级三级大胆视频-片黄片色日韩在线观看免费-五月综合婷婷中文字幕| 欧洲激情综合啪啪五月-国产精选三级在线观看-七七久久成人影院网站-男人深夜福利在线观看| 久久亚洲av综合悠悠色-91手机精品免费在线播放-午夜福利一区二区三区在线播放-97在线精品观看视频| 亚洲国产成人精品毛片九色-成年片黄色大片品赏网-亚洲男人天堂色噜噜av-人妻免费精品久久一区| 日本一区二区三区四区黄色-91在线国产经典观看精品-亚洲一区二区三区免费不卡-av免费在线观看蜜臀| 99一区二区三区精品人妻-国产污视频网站在线观看-伊人激情av一区二区三区-天堂av大片免费观看| 免费手机在线观看bbb视频-国产欧美亚洲精品第1页青草-国产黄a三级三18级三级看三级-宅男视频在线观看一区二区三区| 妖精亚洲av成人精品一区二区-精品日韩一区二区三区av-在线精品国精品国产尤物-在线播放国产精品三级网|