色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Nowadays, the era of nano-manufacturing has come, the dawn of nanoscience has begun.With the deepening of nanotechnology research and the continuous application of nanotechnology, nanotechnology has become one of the most sought after disciplines. In the annual science and technology competitions of Science and Nature, the results of nanotechnology research are at the forefront. Many countries have plans to develop nanotechnology as a national strategy, and the development of nanotechnology is increasing year by year.However, the development of nanotechnology has undergone a long process from the natural presence of nanomaterials (such as living cells, bacteria, soot, etc.) to artificially manipulating atoms, molecules making nanomaterials, which are never consciously conscious To the theoretical breakthrough to the manufacturing process.The presence of nanomaterials in naturecell3.5 billion years ago, the first batch of living cells that are naturally occurring nano-substances. Cells are self-replicating aggregates of nanometer machines that contain a large number of nano-organisms such as proteins, DNA, RNA molecules. These nanoscale cells “organs” perform their duties. The construction of protein, the photosynthesis so that the rapid growth of bio-energy, so that the original surface of the earth covered with microorganisms, plants and other organic substances, it is the earth’s atmospheric CO? into O 2, completely changed the Earth’s surface and atmosphere. It can be seen that these nano-machine aggregates play a pivotal role in the evolution of nature.Natural inorganic nanoparticlesIn addition to the existence of a variety of complex internal nano-substances, the natural existence of natural inorganic nanoparticles. In ancient China, people use the collection of candles burning dust to create refined, this dust is nano-size carbon black; in the ancient bronze mirror surface has a thin layer of rust, after testing found that the rust layer is A film composed of nano-tin oxide. These natural inorganic nanomaterials provide natural material for people to carry out nanotechnology research.The early development of nanotechnologyEarly theoretical developmentIn 400 BC, Democritus and Leucippus put forward the atom, the atom theory for the development of nanotechnology provides a theoretical basis, that is, through a number of technical means from the bottom up to build new material possible. Scientists’ theoretical research on nanotechnology began in the 1860s, and Thomas Graham used gelatin to dissolve and disperse to prepare colloids, with colloidal particles having a diameter of 1 to 100 nm. Later scientists have done a lot of research on colloids, and established a colloid chemistry theory. In 1905, Albert Einstein calculated the sugar from the water in the experimental data to calculate a sugar molecule diameter of about 1nm, the first time on the human dimension has a perceptual knowledge. Until 1935, Max Knoll and N.Ruska developed an electron microscope to achieve sub-nanoscale imaging, providing an observational tool for people to explore the microscopic world.Early technology brewingDuring the Second World War, Professor Tian Liangyi of Nagoya University in Japan developed an infrared radiation absorber for the Japanese missile detector. Under the protection of inert gas, pure zinc black was prepared by vacuum evaporation method. The average particle size of zinc black was less than 10nm. But has not yet been applied to reality, the war is over. Later, the German scientists also prepared nano-metal particles in a similar way, when there is no concept of nanomaterials, put this material called ultra-fine particles (ultra-fine particles), which may be human purpose to manufacture nano-materials Really started.The origin of nanotechnologyFeynman predictedIn December 1959, Nobel laureate Richard Feynman delivered a speech at the American Institute of Physics at the California Institute of Technology at the conference entitled “There are plenty of room at the bottom”. He starts with a “bottom up” and proposes to start assembling from a single molecule or even atom to meet the design requirements. “At least in my opinion, the laws of physics do not rule out the possibility that an atom will produce an atom in an atomic way,” he predicted, “and when we control the fineness of the object, we will greatly expand our physical “Although the technology that really belongs to the” nanometer “category appeared only a few decades later, in this lecture, Feynman foresees the future of nanotechnology, which has defined the role of nanotechnology in the study of nanoscience Provides the earliest theoretical basis. In fact, many scientists in the nanometer scale after the research results to a large extent by the speech inspired by this speech.The birth of nanotechnologyNanotechnology was born in the early 1970s. 1968, Alfred Y. Cho and John. Archu and his colleagues used molecular beam epitaxy to deposit monolayer atoms on the surface. In 1969 Esaki and Tsu proposed a super lattices theory, which consisted of two or more different materials, Constitute. In 1971, Zhang Ligang and other applications using superlattice theory and molecular beam epitaxial growth technology, the preparation of different energy gap size of the semiconductor multilayer, and to achieve the quantum well and superlattice, observed a very rich physical effects. The quantum confinement effect in the quantum well has been studied extensively and deeply, and many new high-performance optoelectronics and microelectronic devices have been developed on this basis. In 1974, Norio Taniguchi invented the term “nanotechnology” to represent machineries with tolerances less than 1 μm, which made nanotechnology truly a stand-alone technique in the stage of history. But the complete picture of physics at the nanometer scale was far from clear.A major breakthrough in nanotechnologySymbol of nanometer revolutionIn 1981, Gerd Binnig and Heirich Rohrer developed the world’s first scanning tunneling microscope (STM) based on the tunneling effect in quantum mechanics, which observed the morphology and manipulation of solid surfaces by detecting the surface currents of solid atoms and electrons. The invention of STM is a revolution in the field of microscopy, and it is “a symbol of the nanometer revolution.” On the basis of STM, a series of scanning probe microscopes have been developed, such as atomic force microscopy (AFM), magnetic microscopy and laser microscopy. The emergence of STM enables mankind to observe in real time the state of individual atoms on the surface of the material and the physical and chemical properties associated with the surface electron behavior, Gerd Binnig and Heirich Rohrer thus won the 1986 Nobel Prize in Physics.Invented the scanning tunneling microscope (STM) scientist Gerd Binnig (left) with Heinrich Rohrer. Source: IBMThe first manipulation of a single atomIn 1989, Donald M. of the IBM Almaden Research Center The Eigler team, with the aid of STM, moved 35 Xe atoms adsorbed on the surface of the metal Ni (110) and formed the three letters of the IBM, which was the first time a human atom was manipulated, One of the big tech news. Scientists have seen the hope of designing and fabricating molecular-sized devices from this nanotechnology that manipulates single atoms.The rapid development of nanotechnologyIn July 1990, the first conference on nanoscience and technology was held in Baltimore, USA. The meeting formally put nanomaterial science as a new branch of materials science. As a starting point, nanotechnology has gained rapid development throughout the 1990s.In 1991, the Japanese scholar Sumio Iijima electron microscopy first discovered multi-walled carbon nanotubes, marking the advent of carbon nanotubes. Two years later Iijima and IBM company Donald Bethune made single-walled carbon nanotubes.In 1995, researchers used atomic layer epitaxy (ALE) technology to make the work of the quantum dot laser at 80K temperature, today a large number of quantum dot laser used in optical fiber communication, CD access, display and so on.In 1990, L. T. Canham discovered the phenomenon of porous silicon luminescence, which for the realization of photoelectric integration on the silicon has opened up a new prospect, to solve the device between the interconnection caused by the delay of the shortcomings, greatly enhance the performance of integrated circuits and computer speed.In 1997, the nanostructure laboratory of the Department of Electrical Engineering of the University of Minnesota was successfully developed using nano-lithography. The disk size was 100nm × 100nm. It was composed of a diameter of 100nm and a length of 40nm. Arranged in a quantum rod array with a storage density of 41011 bits per inch.Nanotechnology is fully developedInto the 21st century, the development and application of nanotechnology flourishing, the world will develop nanotechnology as a national strategy.In 2000, Clinton, the then president of the United States, announced the launch of the National Nanotechnology Initiative (NNI), a significant increase in research funding for nanotechnology, a significant increase in visibility, and a wave of global research on nanotechnology.Japan’s Ministry of Education, Culture, Sports, Science and Technology will allocate 30.1 billion yen (US $ 234 million) in the 2002 budget to implement the “Nanotechnology Integrated Support Program”.In Europe, funding for research and investment in nanotechnology is provided by national programs, European cooperation networks and major companies. At the same time the EU’s research program is the largest, research institutions set up the most, covering a wide range of areas.From the mid-1980s onwards, the Chinese government attaches great importance to the development of nanotechnology.
Source: Meeyou Carbide

Leave a Reply

Your email address will not be published. Required fields are marked *

精品国产亚洲av蜜臀-欧美亚洲伦理在线视频-久久亚洲国产成人影院av-国产精品99蜜臀久久不卡二区| 国语对白高清在线观看-久久av精品一区二区三区-日韩在线中文字幕不卡-免费视频成人高清观看在线播放| 日韩欧美国产亚洲中文-亚洲国产av第一福利网-亚洲欧洲日韩一区二区三区-91精品国产福利线观看久久| 麻豆免费播放在线观看-在线观看成人午夜福利-亚洲华人在线免费视频-国产极品超大美女白嫩在线| 亚洲永久精品在线观看-成人av在线观看免费-蜜臀av免费一区二区三区-成人av在线久色播放| 国产精品一区二区久久人人爽-精品人妻一区二区三区有码-亚洲一二三区精品与老人-久久久之精品久久久| 欧美日韩偷拍丝袜美女二区-精品少妇人妻av免费久久洗澡-四虎精品永久在线观看视频-亚洲国产成人一区二区在线观看| 亚洲91精品麻豆国产系列在线-丝袜美腿诱惑一区二区视频-日本人妻中文一区二区-男女无遮挡啪啪啪国产| 成人久久一区二区三区精品-日本伦理在线一区二区三区-全亚洲最大黄色在线网站-国产免费午夜福利片在线| 亚州国产精品一区二区-尤物在线观看视频免费-国产91久久精品视频-一色桃子中出欲求不满人妻| 久久精品蜜桃一区二区三区-久久99亚洲精品久久-激情文化变态另类快播-国产成人免费永久在线平台| 亚洲情综合五月天中文字幕-日韩在线精品视频播放-日韩午夜午码高清福利片-99久久无色码中文字幕免费| 加勒比大香蕉优优久久-国产av精品国语对白国产-亚洲一区二区免费日韩-国产一级内射无挡观看| 久久噜噜噜精品国产亚洲综合-91精品国产高清久久福利-精品国产一区二区三区麻豆-日本加勒比一区二区在线观看免费| 国产精品中文字幕在线一区-国产成人美女精品自在拍av-密桃av一区二区三区四区-女优免费中文字幕在线| 日韩精品人妻久久久一二三-亚洲精品呻吟久久粉嫩av-女同按摩高潮中出亚洲-亚洲成人精品福利在线| 国产色悠悠综合在线观看-亚洲av综合av一区-久久久久国产精品三级网-欧美日韩精品一区二区不卡| 国产精品成久久久久久三级四虎-亚洲成人av在线高清-国产精品一区二区三区自拍-欧美午夜激情视频网站| 日韩精品人妻视频一区二区三区-国产经典一区二区三区四区-亚洲中文视频免费在线观看-美女自拍大秀福利视频| 在线十八禁免费观看网站-久久99久国产精品黄毛片色诱-日韩高清av在线观看-亚洲黄香蕉视频免费看| 亚洲女人性开放视频免费-亚洲婷婷精品久久久久-亚洲中字字幕中文乱码-韩日av不卡一区二区三区| 久久亚洲av成人久久-国产性色av一区二区-国产三级韩国三级日产三级-国产一二三在线不卡视频| 91亚洲综合成人在线-久久精品亚洲av少妇-日本av一区在线视频-9国产精品久久久久麻豆| 少妇高潮了好爽在线观看男-麻豆国产传媒国产免费-欧美三级黄片在线播放-亚洲一区域二区域三区域四| 国产免费午夜精品福利视频-久热99精品免费视频-久久久免费精品国产色夜-亚洲黄色不卡在线观看| 久久女人天堂精品av-韩国中文字幕三级精品久久-国产成人精品日本亚洲i8-免费黄色一级大片91| 久久国产精品亚洲va麻豆-嫩模大尺度偷拍在线视频-免费三级在线观看自拍-天堂av在线男女av| 黄片毛片av免费观看-四虎国产精品久久免费地址-精品午夜一区二区三区国产av-亚洲成a人一区二区三区久久| 91国际精品麻豆视频-蜜臀av国产在线观看-av一区二区三区精品-人妻精品一区二区三区av| 主播高颜值极品尤物极品-精品少妇人妻av免费看-精品国产免费一区二区久久-成人国产av精品入口在线| 国产精品一区二区三区av麻-蜜桃传媒免费在线播放-久久亚洲中文字幕精品-国产精品白嫩极品在线看| 激情综合网激情国产av-2021日韩午夜影院-精品一区二区三区少妇蜜臀-人妻交换av一区二区| 国产亚洲一区二区三区综合片-亚洲天堂日韩精品在线-有码视频在线观看日本专区-亚洲精品成人福利在线| 久久亚洲av综合悠悠色-91手机精品免费在线播放-午夜福利一区二区三区在线播放-97在线精品观看视频| 蜜桃av在线国产精品-久久精品国产水野优香-亚洲午夜激情免费在线-97精品国产97久久久久久久免费| 国产美女高潮久久精品-国产成人精品十八禁在线播放-成在线人视频免费视频-97超级视频在线观看| 日本一区二区中文字幕久久-日本高清一区二区在线-视频在线观看播放免费-精品国产91av一区二区三区| 在线观看91精品国产性-国产中文字幕精品免费-免费日韩毛片在线观看-精品人妻暴躁一区二区三区| 国产成人精品亚洲av无人区-91麻豆粉色快色羞羞-亚洲视频欧美日韩国产-亚洲天堂网无吗在线视频免费观看| 国产精品一区二区蜜桃视频-四十路五十路熟女丰满av-成人av天堂中文在线-亚洲精品成人国产在线| 亚洲午夜福利在线看片-草草影院在线观看国产-中文字幕在线国产有码-精品99成人午夜在线|