色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Base knowledge of titanium

Titanium is an important structural metal developed in the 1950s. Titanium alloys are widely used in various fields because of their high specific strength, good corrosion resistance and high heat resistance. Many countries in the world have recognized the importance of titanium alloy materials, and have successively studied and developed them, and obtained practical application. Titanium is the fourth B element in the periodic table. It looks like steel and has a melting point of 1 672 C. It is a refractory metal. Titanium is abundant in the crust, far higher than common metals such as Cu, Zn, Sn and Pb. Titanium resources in China are extremely abundant. Only in the super-large vanadium-titanium magnetite discovered in Panzhihua area, Sichuan Province, the associated Titanium reserves amount to about 420 million tons, which is close to the total proved Titanium reserves abroad. Titanium alloys can be divided into heat resistant alloys, high strength alloys, corrosion resistant alloys (Ti-Mo, Ti-Pd alloys, etc.), low temperature alloys and special functional alloys (Ti-Fe hydrogen storage materials and Ti-Ni memory alloys).

Elements of Titanium Alloy

Titanium alloys are alloys based on titanium and added with other elements. Titanium has two kinds of homogeneous heterogeneous crystals: alpha titanium with dense hexagonal structure below 882 C and beta titanium with body-centered cubic structure above 882 C. The alloying elements can be divided into three categories according to their influence on the phase transformation temperature: 1. The elements that stabilize the alpha phase and increase the phase transformation temperature are alpha stable elements, including aluminium, carbon, oxygen and nitrogen. Among them, aluminium is the main alloy element of titanium alloy. It has obvious effect on improving the strength at room temperature and high temperature, reducing specific gravity and increasing elastic modulus of the alloy. (2) The stable beta phase and the decreasing phase transition temperature are beta stable elements, which can be divided into two types: isomorphic and eutectoid. The former includes molybdenum, niobium and vanadium, while the latter includes chromium, manganese, copper, iron and silicon. (3) Neutral elements, such as zirconium and tin, have little effect on phase transition temperature.

Oxygen, nitrogen, carbon and hydrogen are the main impurities in titanium alloys.  Oxygen and nitrogen have higher solubility in the alpha phase, which has a significant strengthening effect on titanium alloy, but reduces its plasticity. Oxygen and nitrogen contents in titanium are usually stipulated to be below 0.15-0.2% and 0.04-0.05% respectively. The solubility of hydrogen in the alpha phase is very small. The excessive hydrogen dissolved in the titanium alloy will produce hydride, which makes the alloy brittle. Usually hydrogen content in titanium alloys is controlled below 0.015%. The dissolution of hydrogen in titanium is reversible.

Structure and Classification of Titanium Alloys 2

classification

Titanium is an isomer with a melting point of 1720 (?) C and a dense hexagonal lattice structure at temperatures below 882 (?), which is called alpha titanium, and a body-centered cubic lattice structure at temperatures above 882 (?) C, which is called beta titanium. Titanium alloys with different microstructures can be obtained by adding appropriate alloying elements to change the phase transformation temperature and phase content gradually. Titanium alloys have three kinds of matrix structures at room temperature. Titanium alloys can also be divided into three categories: alpha alloys, (alpha+beta) alloys and beta alloys. China is represented by TA, TC and TB respectively.

Alpha titanium alloy

It is a single-phase alloy consisting of alpha-phase solid solution. It is alpha-phase both at general temperature and at higher practical application temperature. It has stable structure, higher wear resistance and strong oxidation resistance than pure titanium. Its strength and creep resistance are maintained at temperatures of 500 600 C, but it can not be strengthened by heat treatment, and its strength at room temperature is not high.

Beta titanium alloy

It is a single-phase alloy composed of beta-phase solid solution. It has high strength without heat treatment. After quenching and aging, the alloy is further strengthened, and its room temperature strength can reach 1372-1666 MPa. However, its thermal stability is poor and it is not suitable for use at high temperature.

Alpha+beta titanium alloy

It is a dual-phase alloy with good comprehensive properties, good structural stability, good toughness, plasticity and high temperature deformation properties. It can be processed under hot pressure and strengthened by quenching and aging. After heat treatment, the strength increases by 50%-100% compared with annealing state, and the high temperature strength can work for a long time at the temperature of 400 500 and its thermal stability is inferior to that of alpha titanium alloy.

Among the three kinds of titanium alloys, Alpha-titanium alloy and alpha+beta-titanium alloy are most commonly used; Alpha-titanium alloy has the best machinability, followed by alpha+beta-titanium alloy and beta-titanium alloy. Alpha titanium alloy code TA, beta titanium alloy code TB, alpha + beta titanium alloy code TC.

Structure and Classification of Titanium Alloys 3

Application of titanium alloy

Titanium alloys can be divided into heat resistant alloys, high strength alloys, corrosion resistant alloys (Ti-Mo, Ti-Pd alloys, etc.), low temperature alloys and special functional alloys (Ti-Fe hydrogen storage materials and Ti-Ni memory alloys). The composition and properties of typical alloys are shown in table.

Different phase composition and structure can be obtained by adjusting the heat treatment process. It is generally believed that fine equiaxed structure has better plasticity, thermal stability and fatigue strength; acicular structure has higher endurance strength, creep strength and fracture toughness; equiaxed and acicular mixed structure has better comprehensive properties.

Titanium alloys have high strength, low density, good mechanical properties, good toughness and corrosion resistance. In addition, titanium alloy has poor technological performance and difficult cutting. It is easy to absorb impurities such as hydrogen, oxygen, nitrogen and carbon in hot working. There are also poor wear resistance and complex production process. The industrialized production of titanium began in 1948. With the development of aviation industry, the titanium industry is growing at an average rate of 8% per year. At present, the annual output of titanium alloy processing materials in the world has reached more than 40,000 tons, and there are nearly 30 kinds of titanium alloy grades. The most widely used titanium alloys are Ti-6Al-4V (TC4), Ti-5Al-2.5Sn (TA7) and industrial pure titanium (TA1, TA 2 and TA3).

Titanium alloy is mainly used to make compressor parts of aircraft engine, followed by rocket, missile and high-speed aircraft. In the mid-1960s, titanium and its alloys have been used in general industry to make electrodes in electrolysis industry, condensers in power plants, heaters for petroleum refining and seawater desalination, and environmental pollution control devices. Titanium and its alloys have become a kind of corrosion resistant structural material. In addition, it is also used to produce hydrogen storage materials and shape memory alloys.

Titanium and titanium alloys were studied in 1956 in China, and industrialized production of titanium materials and TB2 alloys were developed in the mid-1960s.

Titanium alloy is a new important structural material used in aerospace industry. Its specific gravity, strength and service temperature are between aluminium and steel, but it has high specific strength and excellent seawater corrosion resistance and ultra-low temperature performance. In 1950, the U.S. first used F-84 fighter bomber as non-load-bearing components such as rear fuselage heat insulation plate, air guide hood and tail hood. Since the 1960s, the use of titanium alloys has shifted from the rear fuselage to the middle fuselage, partially replacing structural steel to manufacture important load-bearing components such as partitions, beams, flaps and slides. The amount of titanium alloy used in military aircraft increases rapidly, reaching 20%-25% of the weight of aircraft structure. Titanium alloys have been widely used in civil aircraft since the 1970s. For example, the amount of Titanium used in Boeing 747 passenger aircraft is more than 3640 kg. Titanium for aircraft with Mach number less than 2.5 is mainly used to replace steel in order to reduce structural weight. For example, the United States SR-71 high-altitude high-speed reconnaissance aircraft (flying Mach number of 3, flying altitude of 26,212 meters), titanium accounted for 93% of the aircraft’s structural weight, known as “all-titanium” aircraft. When the thrust-weight ratio of aero-engine increases from 4 to 6 to 8 to 10 and the outlet temperature of compressor increases from 200 to 300 degrees C to 500 to 600 degrees C, the original low-pressure compressor disc and blade made of aluminum must be replaced by titanium alloy, or the high-pressure compressor disc and blade made of titanium alloy instead of stainless steel, in order to reduce the structural weight. In the 1970s, the amount of titanium alloy used in aero-engines generally accounted for 20%-30% of the total weight of the structure. It was mainly used to manufacture compressor components, such as forged titanium fans, compressor discs and blades, cast titanium compressor casing, intermediate casing, bearing housing, etc.  Spacecraft mainly utilizes the high specific strength, corrosion resistance and low temperature resistance of titanium alloy to manufacture various pressure vessels, fuel tanks, fasteners, instrument straps, frameworks and rocket shells. Titanium alloy plate weldments are also used in artificial earth satellites, lunar module, manned spacecraft and space shuttles.

日韩黄片av在线免费观看-久久精品国产亚洲av色哟哟-亚洲第一中文字幕少妇-91久久精品国产性色tv| 久久中文字幕人妻淑女-日韩欧美亚洲一中文字幕-日本免费一区二区三区视频-亚洲精品乱码免费精品乱码| 亚洲天堂男人的天堂在线-亚洲激情欧美日韩在线-国产av剧情精品老熟女-色老头与人妻中文字幕视频| 国语对白高清在线观看-久久av精品一区二区三区-日韩在线中文字幕不卡-免费视频成人高清观看在线播放| 亚洲av大片免费在线观看-97夫妻午夜精品在线-丰满人妻熟妇乱又伦精另类视频-国产男女啪啪视频观看| 日韩精品综合在线一区二区-极品人妻av一区二区三区-激情综合五月中文字幕-欧美免费在线观看黄片| 久久亚洲国产高清av一级-免费国产精品自偷自偷免费看-日本a级特黄三级三级三级-欧美日韩一区二区中文字幕高清视频| 亚洲中文字幕中出在线-美女口爆吞精在线播放-亚洲欧美清纯唯美另类-国产一区二区三区免费观看不卡| 国产精品综合亚洲综合-精品人妻码一区二区三区红楼视频-亚洲精品一品区二品区三区-日韩欧美色精品噜噜噜| 欧美亚洲午夜精品福利-青草在线视频免费观看-亚洲国产精品久久又爽av-久久少妇呻吟视频久久久| 午夜激情小视频在线观看-日本福利视频免费观看-日本人妻久久精品欧美一区-国产成人自拍小视频在线| 欧美精品一区二区三区三州-少妇被五个黑人玩的在线视频-国产亚洲精品a久久7777-亚洲av色香蕉一区二区精品国产| 日韩av观看一区二区三区四区-美丽的蜜桃3在线观看-久久人妻少妇嫩草av-欧美亚洲另类久久久精品| 亚洲精品一区中文字幕在线-开心五月综合五月综合-日韩av在线播放中文-国产臀交视频在线观看| 国产精品97一区二区三区-四虎永久免费视频播放-久久五十路丰满熟女中出-国产18日韩亚洲欧美| 日本一区二区三区高清视频-九九九热在线观看视频-亚洲综合自拍偷拍人妻丝袜-亚洲精品国产二区三区在线| 大奶人妻丝袜中出在线-亚洲一区久久中文字幕-国产成人av剧情自拍网站-嫩草伊人久久精品少妇av| 午夜亚洲国产色av天堂-色天天综合色天天久久191-国产精品久色婷婷不卡-日韩欧美中文字幕在线韩| 久久噜噜噜精品国产亚洲综合-91精品国产高清久久福利-精品国产一区二区三区麻豆-日本加勒比一区二区在线观看免费| 日韩人妻毛片中文字幕-国产精品亚洲综合第一页-国产精品久久亚洲av-亚洲国产精品一区二区不卡| 91高清在线观看播放-av在线免费观看男人天堂-九九热在线视频免费观看-美女脱内裤露出隐私部位| 网站视频精品一区二区在线观看-中文有码中文字幕免费视频-99热这里有精品久久-日韩av在线高清免费观看| 免费人成视频在线播放-成人级a爱看片免费观看-激情偷乱在线视频播放网-激情综合网激情综合网激情| 亚洲乱色熟女一区二区三区蜜臀-亚洲精品午夜在线免费观看-综合成人亚洲偷自拍色-色综合久久精品中文字幕| 久久偷拍视频免费观看-国产精品国产精品偷麻豆-国产精品一品二区三区最新-精品国产亚洲一区二区三区| 中文字幕日韩有码av-麻豆国产成人av高清在线-可以免费观看的av毛片-久久这里只有精品国产亚洲| 久热在线视频精品99-国产欧美日韩久久午夜-在线观看亚洲精品91-黄色大片一区二区久久精品视频| 欧美日韩精品视频免费下载-中文字幕一区二区三区伦理-一级特黄大片亚洲高清-午夜欧美日韩精品久久久久| 天堂网日韩一区二区三区四区-自拍视频在线观看地址-91麻豆视频免费入口-国产理论片一区二区三区| 国产精品大片中文字幕-国产丝袜av一区二区免费-亚洲av巨作一级精品-国产成人综合亚洲欧美天堂| 在线视频观看一区二区三区-日韩成年人高清精品不卡一区二区-成人深夜节目在线观看-亚洲精品中文字幕一二三| 蜜桃av在线国产精品-久久精品国产水野优香-亚洲午夜激情免费在线-97精品国产97久久久久久久免费| 成人高清视频在线播放-91麻豆免费观看视频-久久婷香五月综合色吧-自拍自产精品免费在线| 91精品国产色综合久久不88-黑人性做爰片免费视频看-房事插几下硬不起来了咋治疗-熟女乱一区二区三区四区| 国产精品内射在线免费看-99久久国产精品一区二区三区-久久国产精品午夜福利-亚洲av精品一区二区三区| 亚洲av优优优色首页-国产精品国产三级av-国产自拍精品午夜福利-亚洲av高清一区二区三区| 国产一级特黄高清大片-欧美精品一区二区三区精品-久久亚洲av成人网人人动漫-日本熟女网站一区二区三区| 日本在线观看一区二区免费-日本一区二区精品在线观看-老湿机午夜免费在线观看-成人在线永久免费观看| 亚洲国产日韩欧美高清-偷窥偷拍一区二区三区四区-国产国亚洲洲人成人人专区-日本韩国午夜视频在线观看| 亚洲91精品麻豆国产系列在线-丝袜美腿诱惑一区二区视频-日本人妻中文一区二区-男女无遮挡啪啪啪国产| 深夜福利导航在线观看-情色视频在线观看一区二区三区-丝袜美腿诱惑福利视频-国产最新福利一区二区三区蜜桃|