色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Nowadays, the demand for orthopedic replacement and rehabilitation equipment is increasing. Medical components include artificial joints and artificial panels, rods and nails used to repair or strengthen body parts damaged by accidents or diseases.

With the general extension of human life expectancy, more and more elderly people suffer from bone and osteoporosis, which leads to the increasing demand for orthopaedic replacement devices. Global weight gain and obesity trends human bones and joints are under pressure from diameter. Gradually, the lifestyle of most people is changing, from lack of physical exercise to more participation in sports, further increasing the demand for posture exchange. With the development of emerging economies, more and more global research institutions predict that the value of the global orthopedic device market will increase to 50 billion euros ($53 billion) by 2024.

1.Competition promotes the development of cutting tools

In the highly competitive orthopedic parts market, the market share of five major suppliers has expanded by about 85%, and the remaining 200 companies compete for the remaining share. Part processing method. Through the application of new materials, implants become stronger, lighter and can last up to 25 years in the body. In this way, orthopedic equipment is a part of the whole consumer lifestyle market, moving towards personalization; Medical device manufacturers are considering how to customize their products to meet patients’ needs for appearance and other alternatives. Product differentiation has become a key competitive advantage. Therefore, machine tool manufacturers seek to develop solutions to enable them to quickly process parts with complex shapes, while tool manufacturers focus on developing tool technology that can provide higher speed and size. Advanced manufacturing technology solutions include 3D printing technology for processing and advanced cooling technology.

2.Typical medical parts

Orthopaedic instruments include hip and knee parts, artificial elbow and fracture joints, incision rehabilitation equipment, spinal plate and various rehabilitation nails, rods and fasteners. The key requirements of these components are strength, reliability, light weight and biocompatibility.

New strategy of milling cutter in orthopedic parts processing 2

3.Machining challenges of milling cutters

For bone and knee implants, the most common workpiece material is cobalt chromium alloy, but the use of titanium is also increasing. Typical cobalt chromium alloys include cocr28mo6, etc., and Ti6Al4V titanium alloy is the most commonly used material.

Both materials are biocompatible and very hard, so they are very suitable for the manufacture of orthopedic parts. However, these same characteristics also increase the difficulty of machining alloys. Cobalt chromium alloy has wear resistance, elasticity and poor performance. This alloy may contain hard abrasive components, which will lead to serious wear of cutting and milling cutters and produce tough and continuous chips. Therefore, it is necessary to use the cutting edge groove type with good chip control performance.

Titanium alloy is light and strong. It will harden and twist during processing. On the central cutting edge and face. The high temperature, large cutting force and high friction in the chip channel will lead to the crescent wear and failure of the milling cutter. The material has a minimum modulus of elasticity, which is advantageous in some implant applications, but the material will rebound from the cutting edge during machining, so it is necessary to pay close attention to the sharpness of the cutting tool.

4.Coolant requirements

Materials used to process orthopaedic implants often produce excessive speed and require the use of coolant. However, the use of traditional coolant usually has great restrictions on preventing part pollution. After processing, the traditional coolant needs to be cleaned, which is a time-consuming and costly process. Coolant itself can cause environmental problems in terms of employee health, safety and handling policies. Another cooling technology uses supercritical carbon dioxide (SCCO2) to dry this supercritical SCCO2 as the medium to transport the dry strong conduit to the cutting area.New strategy of milling cutter in orthopedic parts processing 3

When CO2 is compressed to 74 bar (1070 psi) at 31 C, it will become supercritical when transported to the cutting area. Although it will not produce low-temperature materials such as liquid nitrogen, supercritical CO2 will expand and form dry ice. In this state, it will fill the container like a gas, but the density is similar to that of a liquid. Therefore, the new coolant solution brings higher cooling efficiency and uses existing systems using high-pressure water / oil, micro lubrication (MQL), liquid CO2 and liquid nitrogen.

5.3D printing parts

Another non-traditional manufacturing technology that is becoming more and more common in the production of orthopedic devices is 3D printing, which uses titanium and cobalt chromium alloy powder to produce complex, nearly net formed parts. In the medical industry, selective laser melting (SLM) technology is used to melt powder and manufacture parts layer by layer. This process allows medical device manufacturers to customize parts with special contours and dimensions for patients. From there, a uniform microporous surface can also be produced, thereby accelerating the parts and body. For finish machining, parts produced by 3D printing retain most of the machining characteristics of the metal they use. However, such parts may need postprocessing to reduce the uneven stress generated during the processing. In addition, due to the near net shape and complex contour of the part, part clamping may be a challenge in the later stage of the process.

New strategy of milling cutter in orthopedic parts processing 4

6.Replacement of parts

Total knee arthroplasty usually consists of three basic parts: a contour metal (cobalt chromium alloy or titanium) part called the femoral part, which is connected to the end of the femur (thighbone). This part is fixed to the top of the tibia of the lower leg and consists of a short axis or keel to support the aligned surface with protruding edges. The last one consists of plastic bearing inserts between metal parts to enable the joint to move freely.

Similarly, hip arthroplasty consists of three main parts: a metal femoral stem with a femoral cap or femoral head at the top and inserted into the top of the femur or hip joint. kit. The Neo alinea bearing insert in the knee joint and the plastic cup in the lumbar joint are usually processed from UHMWPE (ultra high molecular weight polyethylene).New strategy of milling cutter in orthopedic parts processing 5

New strategy of milling cutter in orthopedic parts processing 6

7.Combined manufacturing method

For orthopaedic parts, the surface finish of the plastic joint must be excellent to reduce the expected life of the plastic parts, and the plastic parts must be aligned for 20 years at the same time. For example, when the knee is displaced, the femoral prosthesis and tibial bracket must be absolutely smooth to protect the plastic bearing insert from wear.

Therefore, the manufacturing of orthopaedic components usually needs to be ground after milling operation to achieve a sufficiently fine finish. However, grinding is very time-consuming and will affect the overall manufacturing efficiency and output. In addition, the grinding process will also produce high temperature and stress on the base parts, resulting in dimensional errors of parts and affecting the strength and performance of parts.New strategy of milling cutter in orthopedic parts processing 7

In general, advanced cutting machines and high-speed milling strategies can improve the grinding process or replace it in some cases. The purpose of milling is to produce a burr free profile and excellent surface finish, and to achieve specific required surface quality, size and dimensional accuracy. Since the defined surface shape and structure have been realized during milling, the time of post-treatment process (such as polishing (if any)) can be changed alternately. For cutting end mills, the same is true of durable and reliable cutting end mills and maximizing tool life and expectations.

A typical application is to use a ball end mill to process femoral parts made of cast cobalt chromium alloy on a 5-axis milling machine. High speed profiling strategy and high performance end milling cutter eliminate the grinding process. As a result, the machining cycle of each part is 11 minutes, which is 50% shorter than the previous method. The generation of waste parts is eliminated by grinding the hinged surface instead of milling. The integral carbide end mill is made of special cemented carbide materials and hard polished tialsin coating to ensure excellent metal removal rate and smooth cutting effect, so as to obtain excellent surface finish or shortest polishing time.

New strategy of milling cutter in orthopedic parts processing 8

8.Multiple machining operations

The complex contour of orthopedic parts usually requires the use of several special cutting end mills. For example, some types of bone involve seven machining processes: rough machining, bottom rough machining, bottom finish machining, chamfering and T-groove root cutting. These processes can obtain excellent surface quality and reliable tool performance with minimal manual intervention, so as to ensure the best alignment, lowest cost and highest quality.

In the past, when completing various operations, special cutting and milling cutters were needed to achieve each required contour, size and surface finish. Special cutting machines require a lot of design and development time and cost, and due to their reduced size, their crosslinking time may be prolonged and their availability is limited.

The new approach is to develop and use standardized cutting machines that can be produced efficiently in these applications, and these cutting machines must also retain sufficient size for processing other similar parts in the orthopaedic industry.

New strategy of milling cutter in orthopedic parts processing 9 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

国产美女口爆吞精服务-亚洲无人区码一码二码三码-久久精品99国产精品最新-日本少妇激情在线视频| 国产精品乱码一区二区三区-亚洲国产日本不卡一卡-日韩av手机免费网站-国产精品日韩在线亚洲一区| 亚洲精品一区网站在线观看-亚洲精品一区二区三区婷婷月-国产aⅴ精品一区二区三区久久-在线综合亚洲中文精品| 亚洲一区二区三区视频观看-日韩精品一二三四区视频-亚洲码与欧洲码区别入口-日韩精品大片一区二区三区| 色和尚在线视频久天天-少妇高潮太爽了在线免费观看-伊人久久大香线蕉午夜av一区-亚洲国产精品不伦不卡| 日本免费久久精品视频-毛很浓密很多黑毛熟女-97这里只有精品在线-亚洲乱码国产乱码精品精| 国产精品一区二区小视频-欧美亚洲国产精品激情在线-日韩免费视频一区二区三区视频-精品亚洲国产成av人片传媒| 中国美女欧美熟妇视频-五月爱婷婷丁香六月色-国产特黄特色成年女人毛片免-人妻精品一区二区三区久久| 日本激情内射亚洲精品-国产亚洲一区二区三区午夜-国产精品人妻熟女av在线-亚洲av综合亚洲精品| 国产免费无套精品视频-日本特色特黄aaa大片免费-日本精品免费一区二区三区-九九热精品视频在线免费| 欧美亚洲午夜综合一区二区-亚洲大香蕉视频在线观看-国产综合激情人妻91麻豆-国产精品国产三级国产专不| 97资源视频在线观看-青草视频在线免费播放-最新日韩中文字幕在线播放-成人国产av精品麻豆网站| 亚洲一级特黄大片做受-国产91喷潮在线观看-日本不卡一区二区三区四区-在线观看高清视频一区二区三区| 少妇被搞高潮在线免费观看-亚洲av成人精品小宵虎南-日韩性生活免费看视频-日韩黄色大片在线播放| 91高清在线观看播放-av在线免费观看男人天堂-九九热在线视频免费观看-美女脱内裤露出隐私部位| 亚洲乱色熟女一区二区三区蜜臀-亚洲精品午夜在线免费观看-综合成人亚洲偷自拍色-色综合久久精品中文字幕| 亚洲精品综合久中文字幕-色老头国产av一区二区三区-久久夜色精品亚洲噜噜国产-资源新版在线天堂偷自拍| 中文字幕乱码一区在线观看-少妇高潮视频免费观看-日本一区二区三区不卡在线-国产精品网红在线播放| 欧美亚洲午夜综合一区二区-亚洲大香蕉视频在线观看-国产综合激情人妻91麻豆-国产精品国产三级国产专不| 亚洲av成人午夜福利在线观看-日韩精品成人影院久久久-国产在线高清不卡一区-激情五月另类综合视频| 国内精品一区二区三区香蕉-熟女少妇熟女高潮一区二区-亚洲乱码国产乱码精品精男男-国内人妻自拍偷拍视频一区| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频| 正在播粉嫩丰满国产极品-国产成人午夜福利av在线-国产精品自拍自在线播放-一区二区三区四区日本视频| 精品国产一区二区三区色搞-国产极品尤物精品视频-亚洲中文字幕乱码亚洲-午夜日本福利在线观看| 国产自拍在线视频免费观看-精品午夜福利一区二区三区-日韩av在线免费观看毛片-国产三级黄色片在线观看| 少妇被无套内谢免费视频看看-不卡中文在线观看网站-国产精品男女爽免费视频-91精品福利视频久久| 亚洲天堂男人的天堂在线-亚洲激情欧美日韩在线-国产av剧情精品老熟女-色老头与人妻中文字幕视频| 国产精品国产一区日韩一区-老色99久久九九爱精品-国产亚洲精品福利一区-亚洲av乱码av一区二区三区| 成年人有性生活正常吗-亚洲熟女熟妇五十路熟女熟妇-亚洲精品一区二区高清在线-日本视频在线播放91| 五月婷婷丁香综合入口-日本少妇免费中文字幕-96青草视频在线观看-中文字幕成人精品久久不卡| 日韩成人av在线影院-亚洲五月天久操视频在线观看-最新国产AV无码专区亚洲-欧美日韩大香蕉在线视频| 亚洲精品色国语对白在线-黄片毛片av在线免费观看-久久精品有码av天堂-日韩一区二区三区高清视频| 精品女同一区二区免费播放-四虎成人精品国产永久免费-日韩在线播放av不卡一区二区-久热久草香蕉在线视频| 日韩国产自拍在线视频-亚洲av午夜激情在线播放-午夜福利你懂的在线观看-少妇特殊按摩高潮惨叫| 日韩午夜精品免费视频-真实国产精品自拍视频-91麻豆精产国品一二区灌醉-一本色道久久综合亚洲精品东京热| 国产精品18禁免费无摭挡-国产精品久久久看三级-国产亚洲精品熟女国产成人-国产亚洲精品不卡中文| 久久99国产精品久久99蜜桃-国产在线精品福利91啪-日本啪啪免费观看视频-免费看的日麻批网站视频| 国产在线一区二区三区蜜桃-在线免费观看青青草视频-精品91麻豆免费观看-亚洲福利网址在线观看| 国产最新av一区二区-国产精品自产av一区二区三区-国产精品国产三级国产有无不卡-成人偷拍自拍在线观看| 亚洲精品av一区二区日韩-日韩偷拍精品一区二区三区-亚洲欧美熟妇久久久久久-久草视频福利在线观看| 国内自拍视频在线观看h-亚洲美女性生活一级片-香蕉久久夜色精品国产成人-亚洲国产成人久久综合人|