色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Aluminum alloy is a general term for alloys with aluminum as the base. The main alloying elements include Cu, Si, Mg, and Sn, while secondary elements may include nickel, titanium, chromium, lithium, and others. Aluminum alloys have low density, good plasticity for shaping and processing into various forms. They exhibit excellent electrical conductivity, thermal conductivity, and corrosion resistance. Alloys formed by adding specific elements not only maintain the lightweight properties of pure aluminum but also possess higher strength.

aluminum alloy

Classification of aluminum alloy
Aluminum alloys can be classified into deformed aluminum alloys and cast aluminum alloys based on their processing methods.

Deformed Aluminum Alloys: Deformed aluminum alloys can be further categorized into non-heat-treatable and heat-treatable alloys, both of which exhibit moderate strength and hardness. The challenge in machining lies in their high plasticity, resulting in the formation of built-up edge during cutting, making it difficult to achieve a satisfactory performance. Mechanical properties can be improved through heat treatment, but strengthening is mainly achieved through cold working deformation. This category includes high-purity aluminum, industrial high-purity aluminum, industrial pure aluminum, and corrosion-resistant aluminum.

Cast Aluminum Alloys: Cast aluminum alloys have low ductility, with elongation typically below 4%, making them unsuitable for pressure processing and mostly suitable for cutting operations. Silicon-aluminum alloys demonstrate good casting properties and excellent mechanical performance, making them the most widely used cast aluminum alloys. The machinability of silicon-aluminum alloys is influenced by the silicon content, with higher content leading to more severe tool wear and poorer machining performance. Mechanical properties of cast aluminum alloys can be enhanced through heat treatment methods such as quenching and aging. This category includes hard aluminum, forged aluminum, superhard aluminum, and special aluminum alloys.

How to Machine the Aluminum Alloy? 2

Processing defects of aluminum alloy material

Insufficient Rigidity

Due to the strong toughness and resistance to bending of aluminum alloys, it also implies that aluminum alloys lack rigidity. In the machining of thin-walled aluminum alloy components, excessive machining pressure can lead to component deformation. During the cutting process, issues such as stretching, breaking, and surface squeezing may occur, causing displacement and resulting in irreversible situations for thin-walled aluminum alloy components.

Susceptible to Thermal Deformation

Compared to steel, the coefficient of expansion for aluminum alloys is typically 2.4 times that of steel. Therefore, significant heat energy is generated during the machining process, leading to thermal deformation issues in aluminum alloys.

Insufficient Hardness of Aluminum Alloy

During mechanical machining, scratching issues often arise, leading to a lack of glossiness on the surface of thin-walled aluminum alloy components, which does not meet machining standards. Besides daily operational issues, this problem is mainly attributed to the insufficient hardness of aluminum alloy materials.

Thin Surface

The most prominent feature of thin-walled aluminum alloy components is their extremely thin surface. If CNC machine operators use numerical control machine tools for operations, the inherent elasticity of thin plates, coupled with the interaction of forces during cutting, can cause vibration issues on the cutting surface. This, in turn, makes it challenging to effectively control the thickness and dimensions of the cutting surface, thereby increasing the surface roughness of thin-walled aluminum alloy components.

Как обработать алюминиевый сплав? 3

Processing methods?of aluminum alloy

Hot Working

Hot working refers to the plastic forming process completed above the recrystallization temperature when feeding aluminum alloy ingots. During hot working, the ingot’s plasticity is high, and the deformation resistance is low, allowing the production of larger products with smaller equipment capabilities.

Cold Working

Cold working refers to the plastic forming process completed below the temperature that induces recovery and recrystallization. The essence of cold working is a combination of cold working and intermediate annealing processes. Cold working can produce final products with smooth surfaces, precise dimensions, good structural properties, and the ability to meet various performance requirements.

Warm Working

Warm working is a plastic forming process that falls between cold and hot working. The primary purpose of warm working is to reduce the deformation resistance of the metal and enhance its plasticity.

 

Selection method of cutting aluminum alloy cutting tool

Due to the extremely sharp cutting edges and grooves of solid carbide tools, they exert low cutting forces in precision machining of aluminum alloys. They offer advantages such as large chip space and smooth chip evacuation. Consequently, solid carbide tools have gradually replaced traditional high-speed steel tools.

Aluminum alloy is easily machinable, allowing for higher cutting speeds suitable for high-speed machining. However, due to the low melting point of aluminum alloy, its plasticity increases with temperature. Under high-temperature and high-pressure conditions, significant frictional forces occur at the cutting interface, making it prone to tool adhesion. This is especially true for annealed aluminum alloys, which make it challenging to achieve a small surface roughness.

To obtain a smooth workpiece surface, a combination of rough and finish cutting is often employed. This is because various qualified workpiece blanks tend to have some oxide layers, causing considerable wear on the cutting tools. If the final cutting operation uses polished sharp tools for fine cutting, the above requirements can be met.

When selecting suitable tool materials for aluminum-silicon alloys, the silicon content guides the choice. For silicon content below 12%, tungsten steel tools in the ISO K10-K20 range can be used. If the silicon content exceeds 12%, diamond tools are preferred. Alumina ceramic tools are not suitable for aluminum alloy processing. During cutting, the oxidized aluminum chips can chemically bond with the ceramic tool, causing adhesion and chip lumps, leading to increased friction resistance and accelerated wear. Once chip lumps form, they replace the cutting edge during machining. In ultra-precision machining, the sharpness of the tool edge loses its significance. Additionally, the bottom of the chip lump is relatively stable, while the top is unstable and prone to breakage. After breaking, part of it is expelled with the chips, while the remaining part stays on the machined surface, making it rough. The protruding part of the chip lump beyond the tool edge also directly contributes to roughening the machined surface, and the friction between the chip lump and the already machined surface further increases surface roughness.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

亚洲另类午夜中文字幕-日本av手机在线观看-性生交大片免费看看过的-天堂av免费在线观看| 久久精品国产亚洲av高-国产插菊花综合网亚洲-看亚洲裸体做爰av肉-成人免费观看性生活片| 日韩精品少妇一二三区免费av-麻豆蜜桃av免费观看-亚洲欧洲日韩一区二区中文字幕-久久九特黄的免费大片| 精品人妻一区二区三区三区四区-亚洲中文字幕熟女一区二区-91久久精品国产91性色69-国产精品中文字幕中文字幕| 日韩欧美熟妇在线观看-在线视频一区二区三区在线观看-欧美黄色在线观看网站-国产精品综合亚洲91| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 天天射天天插天天色综合-亚洲一二三四区中文字幕-97视频精品在线观看-久久婷婷激情五月综合色| 欧美性色婷婷久久久精品-久久这里只有精品国产宅男av-久久男女爱爱视频免费观看-另类福利亚洲丝袜激情在线| 激情视频在线观看国产一区-日韩高清在线视频一区免费观看-国产白丝精品在线观看-色偷偷伊人大杳蕉综合网| 99久久亚洲综合网精品-久久热福利视频在线观看-日韩av人妻中文字幕-日本一区二区三区视频在线播放| 成人午夜在线免费播放-97精品在线观看免费-亚洲av一级片在线观看-国产原创自拍看在线视频| 国产精品高潮呻吟久久av嫩-青青草免费公开在线观看视频-亚洲欧美日韩另类综合视频-国产三级在线观看精品| 国产精品精品久久99-久久羞羞色院精品全部免费-日韩中文粉嫩一区二区三区-外国黄色三级视频网站| 亚洲乱码中文字幕小综合-欧美亚洲国产精品一区二区-中文字幕人妻系列人妻有码中文-一区二区三区在线观看的视频| 国产精品第五页在线观看-亚洲欧美日韩丝袜另类一区-国产懂色av一区二区三区-午夜亚洲欧美日韩在线| 国产在线精品一区二区中文-亚洲小说欧美另类激情-97碰久日韩视频在线观看-日本一道本高清不卡区| 激情视频在线观看国产一区-日韩高清在线视频一区免费观看-国产白丝精品在线观看-色偷偷伊人大杳蕉综合网| 精国产精品亚洲二区在线观看-日韩人妻少妇一区二区三区-久久视频这里只要精品-亚洲精品欧洲综合在线观看| 亚洲另类午夜中文字幕-日本av手机在线观看-性生交大片免费看看过的-天堂av免费在线观看| 日韩精品人妻久久久一二三-亚洲精品呻吟久久粉嫩av-女同按摩高潮中出亚洲-亚洲成人精品福利在线| 亚洲视频在线观看第一页-精品偷拍另类欧美日韩-日韩高清在线一区二区三区-久久天天操狠狠操夜夜av| 国产激情在线观看视频-久久久精品国产视频在线-亚洲国产成人精品在线-亚洲乱码国产乱码精品视频| 四虎精品高清在线观看-日韩有码国产中文字幕-国产一区二区三区亚洲污在线观看-亚洲av永久久无久之码精| 亚洲伊人色综合网站亚洲伊人-香蕉久久国产超碰青草91-激情综合七月插插综合-亚洲一区二区三区夏目彩春| 午夜视频在线观看色诱-久久精品午夜福利视频-熟妇人妻av一区二区三区-一区二区三区中文字幕在线观看| 国产青青草原一区二区三区-日本自拍视频在线观看-国产一二三区精品亚洲美女-中文字幕日产人妻久久| 免费人成视频在线播放-成人级a爱看片免费观看-激情偷乱在线视频播放网-激情综合网激情综合网激情| 精品人妻一区二区三区三区四区-亚洲中文字幕熟女一区二区-91久久精品国产91性色69-国产精品中文字幕中文字幕| 日本午夜av免费久久观看-国产精品夜色一区二区三区不卡-亚洲高清自有码中文字-青青草国产成人在线观看| 亚洲av色福利天堂在线观看-人妻少妇午夜福利视频-男人的天堂av在线视频-国内揄拍国产精品人妻一区二区| 我要去外滩路线怎么走-97在线看片免费视频-秋霞电影国产精品麻豆天美-亚洲天堂资源在线免费观看| 国产免费午夜精品福利视频-久热99精品免费视频-久久久免费精品国产色夜-亚洲黄色不卡在线观看| 亚洲国产国语对白在线视频-中文字幕中文字字幕码一区二区-毛片av在线免费观看-免费在线观看av毛片| 日韩精品中文一区二区三区在线-午夜视频国产在线观看-日韩中文字幕av有码-最新日韩精品视频免费在线观看| 亚洲欧美日韩另类影院-亚洲一区二区三区精品春色-精品人妻久久一品二品三品-人妻有码av中文字幕久久午夜| 18禁成人一区二区三区av-亚洲热热日韩精品中文字幕-亚洲中文字幕视频第一二区-亚洲国产日韩精品在线| 久久亚洲av综合悠悠色-91手机精品免费在线播放-午夜福利一区二区三区在线播放-97在线精品观看视频| 91福利精品第一导航-国产一区二区三区不卡精品-偷拍日本美女公厕尿尿-国产黄三级三级三级看三级| 传媒精品视频在线观看-久久蜜汁成人国产精品-国产精品伦理视频一区三区-丰满少妇特黄一区二区三区| 99久久亚洲综合网精品-久久热福利视频在线观看-日韩av人妻中文字幕-日本一区二区三区视频在线播放| 毛片内射免费夫妻内射-蜜臀av人妻中文字幕-插胃管的注意事项及护理要点-青青草视频精品在线播放|