色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

High-speed milling technology has had a significant impact on mould processing procedures, transforming traditional processes such as “annealing → milling → heat treatment → grinding” or “electrical discharge milling → manual grinding and polishing” into streamlined processes where high-speed cutting can replace all previous steps. High-speed milling technology is not only suitable for the direct milling of hardened mould cavities (particularly for semi-finishing and finishing) but has also found widespread application in EDM electrode processing, rapid prototyping, and other areas. Extensive production practices have shown that using high-speed cutting technology can save about 80% of manual grinding time in subsequent mould processing, reduce processing costs by nearly 30%, achieve surface processing precision of 1 micrometer, and double the tool cutting efficiency.

Technical Characteristics of High-Speed Milling and Its Applications in the Mould Manufacturing Industry 1

High-Speed Cutting Milling Equipment

1.High Stability of Machine Bed Components

The bed and support components of a high-speed cutting machine must exhibit excellent dynamic and static stiffness, thermal rigidity, and optimal damping characteristics. Most machines use high-quality, high-rigidity gray cast iron for these components, with some manufacturers incorporating high-damping polymer concrete into the base to enhance vibration resistance and thermal stability. This not only ensures stable machine accuracy but also prevents tool chatter during cutting. Measures such as closed bed designs, integral casting of the machine bed, symmetric bed structures, and dense ribbing are also crucial for enhancing machine stability.

 

2.Machine Spindle

The spindle performance of high-speed machines is crucial for achieving high-speed cutting. High-speed cutting spindles typically operate at speeds ranging from 10,000 to 100,000 RPM, with spindle power greater than 15 kW. Spindle axial gaps between the tool holder and spindle are controlled to be no more than 0.005 mm using compressed air or cooling systems. Spindles are required to have rapid acceleration and deceleration capabilities, meaning they must have high angular acceleration and deceleration rates.

High-speed spindles often use liquid static pressure bearings, air static pressure bearings, hot-pressed silicon nitride (Si3N4) ceramic bearings, or magnetic suspension bearings. Lubrication is commonly achieved with oil-air lubrication or spray lubrication, and spindle cooling typically involves internal water or air cooling.

 

3.Machine Drive System

To meet the demands of high-speed mould processing, the drive system of a high-speed milling machine should have the following characteristics:

High Feed Speed: Research indicates that increasing spindle speed and feed per tooth is beneficial for reducing tool wear, especially for small-diameter tools. Common feed speed ranges are 20-30 m/min, with large lead ball screws allowing speeds up to 60 m/min and linear motors achieving up to 120 m/min.

High Acceleration: High-speed milling of complex 3D surfaces requires a drive system with good acceleration characteristics, with drivers providing high-speed feed (fast feed rate of about 40 m/min and 3D profile processing speed of 10 m/min) and accelerations and decelerations ranging from 0.4 m/s2 to 10 m/s2.

Most machine manufacturers use closed-loop position servo control with small lead, large-size, high-quality ball screws or large lead multi-head screws. Advances in motor technology have led to the development and successful application of linear motors in CNC machines. Linear motor drives eliminate issues such as mass inertia, overshooting, lag, and vibrations, speeding up servo response, improving servo control accuracy, and enhancing machine processing precision.

 

4.CNC System

Advanced CNC systems are key to ensuring the quality and efficiency of high-speed processing of complex mould surfaces. Basic requirements for CNC systems in high-speed cutting include:

High-Speed Digital Control Loop: Includes 32-bit or 64-bit parallel processors and hard drives with over 1.5 GB; extremely short linear motor sampling times.

Speed and Acceleration Feedforward Control: Digital drive systems with jerk control.

Advanced Interpolation Methods: Such as NURBS-based spline interpolation for good surface quality, precise dimensions, and high geometric accuracy.

Look-Ahead Function: Requires a large capacity buffer register to pre-read and check multiple program segments (e.g., up to 500 segments for DMG machines, and 1000-2000 segments for Siemens systems) to adjust feed speeds and avoid over-cutting when surface shapes (curvatures) change.

Error Compensation Functions: Includes compensation for thermal errors due to linear motors and spindles, quadrant errors, measurement system errors, etc. Additionally, high data transmission speeds are required.

Data Interfaces: Traditional data interfaces like RS232 serial ports transmit at 19.2 kb, while many advanced milling centers now use Ethernet for data transmission at speeds up to 200 kb.

Technical Characteristics of High-Speed Milling and Its Applications in the Mould Manufacturing Industry 2

5.Cooling and Lubrication

High-speed milling uses coated carbide tools and operates without cutting fluids, resulting in higher cutting efficiency. This is because the high centrifugal forces of the rotating spindle make it difficult for cutting fluids to reach the cutting zone, and even if they do, the high temperatures may cause the fluids to evaporate, reducing cooling effectiveness. Additionally, cutting fluids can cause rapid temperature changes at the tool edge, leading to cracking. Thus, dry cutting with oil/air cooling is employed. This method quickly blows away the cutting heat with high-pressure air, and atomized lubrication oil forms a thin protective film on the tool edge and workpiece surface, effectively extending tool life and improving surface quality.

milling cutters

Tools for High-Speed Cutting

Tools are one of the most critical factors in high-speed cutting, directly impacting processing efficiency, manufacturing costs, and product precision. High-speed cutting tools must withstand high temperatures, pressures, friction, impact, and vibrations. They should have good mechanical properties and thermal stability, including impact resistance, wear resistance, and thermal fatigue resistance. The development of high-speed cutting tools has been rapid, with common materials including diamond (PCD), cubic boron nitride (CBN), ceramic tools, coated carbide, and titanium carbide (TiC) and titanium nitride (TiN) hardmetals.

For cutting cast iron and alloy steel, carbide is the most commonly used tool material due to its good wear resistance, although its hardness is lower than CBN and ceramics.

To improve hardness and surface finish, coating technologies such as titanium nitride (TiN) and aluminum titanium nitride (TiAlN) are employed. Coating technology has evolved from single-layer to multi-layer and multi-material coatings, becoming a key technology for enhancing high-speed cutting capabilities. Carbide inserts with titanium carbonitride coatings in the diameter range of 10-40 mm can process materials with Rockwell hardness below 42, while titanium aluminum nitride-coated tools can handle materials with Rockwell hardness of 42 or higher.

For high-speed cutting of steel, tools made from heat-resistant and fatigue-resistant P-class carbide, coated carbide, CBN, and CBN composite materials (WBN) are preferred. For cutting cast iron, fine-grain K-class carbide should be used for roughing, and composite silicon nitride ceramics or polycrystalline CBN (PCBN) tools for finishing.

For precision milling of non-ferrous metals or non-metallic materials, polycrystalline diamond (PCD) or CVD diamond-coated tools are recommended. When selecting cutting parameters, attention should be given to the effective diameter for round blades and ball end mills. High-speed milling tools should be designed with dynamic balancing, and the cutting edge angles should be adjusted compared to conventional tools.

High-Speed Milling Processes and Strategies

High-speed machining includes roughing, semi-finishing, finishing, and mirror finishing to remove excess material and achieve high-quality surface finishes and fine structures.

 

черновая обработка

The primary goal of mould roughing is to maximize material removal rate per unit time and prepare the geometric profile of the workpiece for semi-finishing. The process plan for high-speed roughing involves a combination of high cutting speeds, high feed rates, and small cutting depths. The most commonly used CAM software employs methods like spiral contouring and Z-axis contouring, which generate continuous, smooth tool paths in a single pass without retracting the tool, using arc entry and exit methods. Spiral contouring avoids frequent tool retraction and approach, minimizing the impact on surface quality and machine wear. Steep and flat areas are processed separately, with optimized tool paths generated using spiral methods with minimal retraction to achieve better surface quality. In high-speed milling, it is essential to use arc entry and exit methods and maintain a consistent tool path to minimize machine wear and achieve higher material removal rates.

 

Semi-Finishing

The semi-finishing process focuses on improving surface quality and dimensional accuracy, bridging the gap between roughing and finishing. The cutting speeds are higher than those used in traditional milling but lower than those in finishing. The primary goal is to achieve a better surface finish and precision by using a reduced depth of cut and controlling feed rates. Advanced CAM systems generate tool paths using techniques like trochoidal milling and adaptive clearing, which adaptively change cutting parameters based on the workpiece geometry and tool path. This method enhances tool life and surface quality while reducing cutting forces and thermal stresses.

 

отделка

Finishing operations aim to achieve the final surface quality and dimensional accuracy. High-speed finishing involves higher cutting speeds and lower depths of cut, using techniques such as high-speed finishing cuts with constant engagement to ensure a smooth and uniform surface. Tool paths are optimized using advanced CAM software to achieve the desired surface finish and accuracy. Techniques like high-speed trochoidal milling and constant chip load milling are used to achieve excellent surface finishes and tight tolerances.

 

Mirror Finishing

Mirror finishing is the final step to achieve an exceptionally smooth and reflective surface. High-speed mirror finishing processes often involve special tools and techniques, including abrasive tools and polishing compounds. The key is to minimize surface irregularities and achieve a mirror-like finish with high precision. Techniques such as high-speed burnishing, polishing, and super-finishing are employed to achieve the desired surface quality.

 

Вывод

High-speed milling technology has revolutionized the mould manufacturing industry by significantly enhancing machining efficiency, precision, and surface quality. The integration of advanced machining equipment, CNC systems, tooling technologies, and innovative milling strategies has enabled the production of complex mould cavities with high accuracy and reduced processing times. As technology continues to advance, high-speed milling will play an increasingly crucial role in meeting the evolving demands of the mould manufacturing industry.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

欧美日韩激情片在线观看-色男人天堂网在线观看-亚洲一级特黄大片免色-国产十八禁免费在线观看| 日韩黄片av在线免费观看-久久精品国产亚洲av色哟哟-亚洲第一中文字幕少妇-91久久精品国产性色tv| 91高清精品一区在线观看-成人黄色大片免费网站-国产成人综合亚洲另类-气质女人呻吟内射在线观看| 国产精品蜜桃久久一区二区-久久精品熟女亚洲av麻豆蜜臀-日本一区二区精品色超碰-伊人一区二区三区久久精品| 最近日本中文字幕免费完整-欧美男女性生活真人视频-激情综合网激情综合网激情综合-中文字幕日韩有码国产精品| 亚洲av色福利天堂在线观看-人妻少妇午夜福利视频-男人的天堂av在线视频-国内揄拍国产精品人妻一区二区| 亚洲av成人精品日韩一区二区-日本50岁成熟丰满熟妇-欧美日韩久久婷婷一区二区-亚洲成人天堂在线观看| 色哟哟中文字幕在线播放-人人妻人人澡人人狠人人爽-国产午夜福利精品一区二区三区-性生活在线免费视频观看| 国产大波精品一区二区在线-男女床上激情免费网站-日韩成人在线高清视频-国产精品视频免费自拍| 亚洲欧洲偷拍自拍av-日韩午夜福利剧场久久-午夜福利成人在线视频-91午夜福利在线观看精品| 国产性色av综合亚洲不卡-中文字幕一区二区在线资源-久久四十路五十路六十路-91九色在线观看免费| 国产精品一区二区在线观看免费-日本老熟妇色视频免费-亚洲码国产精品高潮在线-日韩一区二区三区日韩| 亚洲免费国产午夜视频-女同亚洲一区二区三区精品久久-欧美一级黄片高清免费-久久国产亚洲中文字幕| 久久国产精品国产婷婷-四虎在线观看最新入口-天堂中文资源在线天堂-久久亚洲av日韩av天堂| 亚洲人妻精品中文字幕-国产黄色性生活一级片-日韩人妻系列在线视频-精品国产看高清av毛片| 悠悠成人资源亚洲一区二区-国产成人综合亚洲国产-青青草在线公开免费视频-91精品日本在线视频| 水蜜桃精品视频在线观看-日本国产一区二区在线观看-69久久夜色国产精品69-免费观看亚洲成人av| 日本免费精品一区二区三区四区-天天日天天射天天综合-国产在线精品免费av-高潮一区二区三区久久亚洲| 国产亚洲成人精品久久久-亚洲免费av高清在线观看-在线观看国内自拍视频-亚洲国产成人精品综合色| 人妻少妇av免费久久蜜臀-欧美国产日韩在线一区二区-美女被啪啪到深处好爽无套-日韩av一区在线资源播放| 亚洲高清日本一区二区三区-日韩极品精品一区二区三区-亚洲成人av在线一区二区-亚洲精品国产精品粉嫩| 日韩午夜精品免费视频-真实国产精品自拍视频-91麻豆精产国品一二区灌醉-一本色道久久综合亚洲精品东京热| 久久av这里只有精品-国产三级视频不卡在线观看-精品亚洲综合久久中文字幕-在线观看日韩av系列| 自拍成人免费在线视频-91在线高清视频播放-国产美女口爆吞精系列-午夜福利黄片在线观看| 亚洲黄色美女视频大全-成上人色爱av综合网-亚洲一区二区三区激情在线观看-久久91精品国产一区二区| 日韩一区二区精品在线观看-日韩熟妇中文色在线视频-亚洲午夜精品免费福利-国产精品一区第二页尤自在拍| 华人精品在线免费观看-国产熟女精品一区二区三区-国产成人午夜视频网址-女女同性女同一区二区三区九色| 女同在线播放中文字幕-国产成人亚洲精品在线看-日韩有码在线观看视频-蜜桃av噜噜一区二区三区视频| 日韩精品视频网在线播放-亚洲综合网一区二区三区偷拍-岛国av在线播放观看-欧美日韩国产另类综合| 少妇裸淫交视频免费看-欧美日韩中文字幕第一页-91精品看黄网站在线观看-国产精品一区二区三区色噜噜| 日本厕所偷拍美女尿尿视频-婷婷国产一区综合久久精品-欧美一日韩成人在线视频-四虎精品视频免费在线观看| 久久都是精品久久都是精品-精国精品一区二区成人-亚洲品质自拍在线观看-中文 字幕乱码高清视频| 主播高颜值极品尤物极品-精品少妇人妻av免费看-精品国产免费一区二区久久-成人国产av精品入口在线| 正在播放后入极品美少妇-亚洲一区二区三区自拍麻豆-国产亚洲精品成人久久-av老司机亚洲精品久久| 亚洲精品一区二区三区麻豆-国产精品小视频在线看-亚洲国产成人av第一二三区-国产不卡一区二区三区免费视频人| 欧美成人国产精品137片内射-空之色水之色 在线观看-精品国产亚洲一区二区在线观看-色婷婷精品午夜在线播放| 国产精品视频午夜福利-一本大道久久综合一区-成年深夜福利在线观看-国产传媒免费在线视频| 少妇特殊按摩高潮连连-国产成熟美女三级视频-亚洲男人天堂成人免费-国产粉嫩美女在线观看| 大屁股丰满肥臀国产在线-亚洲国产一区二区精品在线观看-久久黄色精品内射胖女人-日韩精品国产综合一区二区| 日韩有码中文在线视频-少妇我被躁爽到高潮在线观看-精品丰满人妻一区二区三区-亚洲天堂高清在线播放| 午夜精品久久内射电影-亚洲精品自拍视频免费在线-国产免费观看久久黄av麻豆-麻豆国产精品伦理视频|