色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

With the development of the automotive, aerospace, and aerospace industries, as well as the increasing demand for lightweight and high-strength materials, the application of non-ferrous metals, carbon fiber reinforced plastics (CFRP), glass fiber reinforced plastics (GFRP), fiber reinforced metals (FRM), graphite, ceramics, and other new materials in the industry is becoming more widespread. As a result, higher requirements are being placed on the cutting tools used to process these materials. carbide, as a widely used tool material, does not provide ideal tool life, machining quality, and machining precision when processing the aforementioned materials. Diamond is considered an ideal tool coating material due to its high hardness, high wear resistance, low friction coefficient, low thermal expansion coefficient, and high thermal conductivity. Table 1 provides a comparison of the properties of diamond and other coating materials.

Table 1 Mechanical and Thermal Properties of Common Hard Coatings Strength of materials

материалы Melting point or decomposition temperature(℃) твердость

HV

MPa

Yang’s

modulus

kN/mm2

Coefficient of thermal expansion

10-6k-1

Thermal conductivity

W/(m.K)

Al2O3 2047 21000 400 6.5 ~25
Diamond 3800 80000 1050 1 1100
c-BN 2730 50000 440
SiC 2760 26000 480 5.3 84
Si3N4 1900 17000 310 2.5 17
TiB2 3225 30000 560 7.8 30
TiC 3067 28000 460 8.3 34
Банка 2950 21000 590 9.3 30
WC 2776 23000 720 4.0 35

 

Инструменты из карбида алмаза обычно подразделяются на инструменты из карбида природного алмаза, инструменты из поликристаллического алмаза (PCD) и инструменты с алмазным пленочным покрытием. Природные алмазы редко используются в промышленности из-за их дефицита и высокой стоимости. Инструменты PCD имеют сложные производственные процессы, высокую стоимость и ограниченный ассортимент, что ограничивает их широкое промышленное применение. С другой стороны, метод плазмохимического осаждения из паровой фазы (PCVD) позволяет наносить алмазные пленки на поверхности инструментов сложной формы, повышая эффективность и снижая производственные затраты. На рис. 1 показано сравнение износа квадратных твердосплавных вертикальных фрез с алмазным покрытием и без него при обработке кремнийалюминиевого сплава. Алмазная пленка CVD значительно продлевает срок службы твердосплавных инструментов, превращая инструменты с алмазным покрытием в высокопроизводительные инструменты с многообещающими перспективами развития.

carbide tool

2Improvement of preparation process

2.1 surface pretreatment

Due to variations in tool manufacturers, tool materials, and distribution channels, the surface condition of cutting tools can vary significantly. However, diamond coatings have strict requirements for the substrate surface condition. In order to obtain diamond-coated tools with stable quality, appropriate pretreatment of the substrate surface is necessary.

1)Surface purification and coarsening

During the manufacturing process of carbide?tools, it is inevitable that some contaminants, adsorbates, and oxides will remain on the tool surface. These substances can hinder direct contact between the diamond film and the substrate, as well as affect the quality of subsequent processes. For example, surface residues of oil can affect the etching effect of acid on Co. Therefore, surface purification is necessary during pretreatment.

Common methods of purification include chemical cleaning and liquid ultrasonic cleaning. When purifying the tool surface, suitable purification agents should be chosen based on the tool manufacturing process of the tool manufacturer. Surface roughening can alter the microstructure of the substrate surface, remove WC particles with low surface adhesion, increase the specific surface area of the substrate, increase the surface energy of the substrate, improve the nucleation density of diamond on heterogeneous substrates, and enhance the adhesion between the film and the substrate. Common methods include mechanical grinding and liquid ultrasonic treatment.

 

2)Surface seeding

Diamond powder suspended in a solution is used for ultrasonic treatment of carbide. For flat-surfaced tools, diamond powder can also be used as an abrasive for grinding. This not only removes surface impurities and facilitates the detachment of poorly adhered WC particles, but also increases surface roughness. Moreover, the residue of fragmented diamond powder within surface defects of carbide?provides nucleation cores for CVD diamond deposition, thereby enhancing nucleation density.

How has the research progress been on diamond-coated carbide tools? 2

3)Optimization of surface force points

Due to the significant thermal stress between diamond and the substrate, this thermal stress is concentrated more at the cutting edge of the tool. As a result, the adhesion between the diamond film and the substrate is particularly weak at the cutting edge. This can be addressed by optimizing the geometric shape of the stress point, such as increasing the ratio of r/h (where r represents the curvature radius of the cutting edge and h is the thickness of the diamond film). This helps reduce the lateral force between the diamond film and the substrate, disperses the load exerted on the diamond film during tool use, and extends the wear resistance of the diamond film.

2.2 Reducing the adverse effects of Co on diamond deposition

Due to the catalytic effect of Co on graphite formation at CVD deposition temperatures, it is necessary to avoid direct contact between Co and the diamond film or eliminate the reactivity of Co.

1)acid etching

Due to the electrode potential of Co being -0.28V, acids can be used to etch the surface layer of Co on the substrate. Commonly used acids include HCl, HNO3, H2SO4+H2O2, etc.

2)plasma etch

This method involves treating carbides with hydrogen plasma or oxygen-containing hydrogen plasma to remove surface Co in the shallow layer by utilizing the reaction between plasma and Co to form volatile compounds. Simultaneously, WC is reduced to metallic W by the hydrogen plasma, and the metallic W combines with carbon in the subsequent CVD deposition of diamond films, forming small WC particles with sizes ranging from 10 to 100 nm. This refinement of the surface increases the contact area between the diamond film and the substrate, further enhancing the adhesion strength of the diamond film. Figure 3 illustrates the schematic of decarbonization and reduction.

3) Passivated cobalt

Using chemical substances to react with cobalt metal, stable compounds are formed to deactivate the cobalt in the surface layer. Examples include chemical passivation and plasma passivation.

4)Chemical reaction displacement method

The carbide?can be immersed in a chemical reagent, and through a displacement reaction, the surface cobalt metal can be replaced by another substance, thereby achieving the removal of cobalt from the surface layer. This method also takes into account the mechanical strength of the alloy. For example, copper (with an electrode potential of 0.343V) can be used to replace cobalt.

5)Selection of substrate materials

Another approach is to directly use WC as the substrate without the adverse factors of the binder phase Co by employing high-temperature sintering. This allows the tool to withstand higher temperatures during diamond film deposition and accelerates the deposition rate. Alternatively, diamond particles can be added to the raw materials of the tool before hot pressing and sintering, and through appropriate processing techniques, a gradient of increasing diamond particle concentration can be formed from the body to the surface of the tool. In this way, the diamond in the tool serves as an excellent nucleation core for CVD diamond, thereby enhancing nucleation density.

2.3 Apply intermediate transition layer

The residual stresses within the diamond coating have a significant impact on adhesion. These residual stresses typically consist of two components: thermal stress σth and intrinsic stress σi. The thermal stress is caused by the difference in thermal expansion coefficients between the coating and the substrate. According to empirical formulas:

σth=Ef(αf-αs)(Ts-Tr)/(1-ψf)

Ef, ψf, and αf represent the elastic modulus, Poisson’s ratio, and thermal expansion coefficient of the diamond coating, respectively. They are taken as 1228 GPa, 0.07, and 1.0 × 10-6 K-1, respectively. αs represents the thermal expansion coefficient of the WC-6%Co cemented carbide substrate, which is taken as 5.4 × 10-6 K-1. Ts is the substrate surface temperature during deposition, taken as 1023 K, and Tr is room temperature, taken as 298 K. Based on these values, the estimated thermal stress in the coating is -4.21 GPa.?It ?prevents direct reactions between the film and the substrate during deposition, such as excessive carbon diffusion into the substrate and diffusion of Co from the substrate’s depths to the surface, which could affect diamond growth.

When selecting an intermediate transition layer material, the following factors should be considered:

  1. Moderate thermal expansion coefficient to accommodate the thermal stress between the diamond film and the substrate.
  2. Good adhesion to both the cemented carbide and diamond materials.
  3. Stable chemical properties and sufficient mechanical strength.
  4. Ability to react with Co to form stable compounds or prevent Co migration to the surface during high-temperature deposition. For example, when using a B/TiB2/B transition layer, the B on the substrate surface can react with Co to form stable CoB, thereby passivating Co. The surface layer of B can provide good adhesion to the diamond film, while the main body of the transition layer, TiB2, effectively inhibits Co migration. This structure is illustrated in Figure 4(a). A composite transition layer of TiCN/Ti can effectively prevent the formation of a third phase, Co3W3C, which may reduce the strength of the tool substrate due to decarburization treatment. Ti can form a strong connection with the diamond film, as shown in Figure 4(b).

How has the research progress been on diamond-coated carbide tools? 3

2.4 Control of sedimentation process for carbide tool

The residual stress within the diamond coating also includes intrinsic stress (σi), which can be divided into growth stress and interface stress. The growth stress is mainly caused by compressive stress induced by impurities (graphitic carbon, amorphous carbon, hydrogen, etc.) in the coating and tensile stress generated by defects such as voids and dislocations. It is primarily influenced by the growth process. Therefore, controlling the deposition process can help improve the intrinsic stress.

1)Temperature control

Temperature has a significant influence on the growth rate, morphology, and inherent quality of diamond films. Additionally, temperature has a notable impact on the migration of Co. At high temperatures, Co not only facilitates the conversion of carbon into graphite but also increases the migration rate of Co towards the surface. This leads to significant erosion of Co by plasma, resulting in a depletion of Co in the carbide?substrate phase and affecting the strength of the tool itself. Conversely, excessively low deposition temperatures can increase the non-diamond components in the film. Figure 5 illustrates the variation of cobalt content on the surface of the carbide?substrate with different temperatures.

Therefore, the suitable temperature range for depositing CVD diamond films on carbide?substrates is narrower compared to other materials such as Si or Mo. The deposition temperature can be lowered by utilizing halogens for enhanced etching of non-diamond carbon. For example, Trava-Airoldi et al. achieved a deposition temperature as low as 580°C by adding CF4 to the reaction gas.

How has the research progress been on diamond-coated carbide tools? 4

2)Control of carbon containing gas source concentration

A high concentration of carbon-containing gas source can increase the growth rate of diamond films. However, it also leads to an increase in non-diamond components within the diamond film. Therefore, it is essential to control the concentration of the carbon-containing gas source. Figure 6 illustrates the influence of different methane concentrations on the internal stress of diamond films.

 

How has the research progress been on diamond-coated carbide tools? 5

3)Diamond doping

Doping diamond with a small volume of boron (B) can improve the chemical composition of the carbon transition layer between the diamond film and the substrate, enhancing the bonding strength between the film and the substrate. It also helps improve the stress distribution within the interface layer. Boron sources used for doping include B203 and B2H6.

2.5 Treatment after sedimentation

This method involves slow cooling of the coated tool once the diamond film has reached the desired thickness, aiming to reduce the thermal stress caused by thermal expansion differences.

The aforementioned methods have been introduced to enhance the adhesion between the diamond film and the carbide?substrate. In practical applications, multiple methods are often combined and implemented based on specific requirements and needs.

3 Existing problems and prospects

Currently, although some foreign companies have diamond-coated cutting tools available on the market, the constraints on adhesion have limited their application to only a few grades of carbide?tools. Moreover, the thickness of the diamond coating is generally less than 30 μm. As shown in Figure 7, there is significant variation in performance even among products from the same manufacturer. Additionally, for special geometric tools like end mills, it remains a challenge for researchers to control the heat flow and ensure uniform heating during mass production. Therefore, future research directions for the process of diamond-coated carbide?tools can be categorized as follows:

  1. Expanding the range of carbidetools that can be coated with diamond.
  2. Increasing the thickness of the diamond coating.
  3. Ensuring stability and consistency in quality during large-scale production.

Как продвигаются исследования твердосплавных инструментов с алмазным покрытием? 6

Vc2 represents uncoated carbide?tools, PCD represents polycrystalline diamond carbide tools, and others represent CVD diamond-coated tools.

In summary, the production challenges of CVD diamond-coated carbide?tools lie in the less-than-ideal adhesion. However, recent research progress indicates that in-depth studies on improving adhesion processes have significant implications for producing high-quality, cost-effective diamond-coated tools that meet industrial application requirements.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

国产成人高清视频在线观看免费-人妻精品一区二区在线视频-国产成人一区二区三区精品久久-农村肥白老熟妇20p| 开心五月这里只有精品-欧美日韩国产亚洲中文高-玩弄漂亮邻居少妇高潮-av资源中文在线天堂| 国产精品第五页在线观看-亚洲欧美日韩丝袜另类一区-国产懂色av一区二区三区-午夜亚洲欧美日韩在线| 一本色道亚州综合久久精品-91麻豆国产专区在线观看-一级二级三级国产视频-熟女av天堂免费高清| 午夜福利国产在线播放-中文字幕日产乱码久久正宗-亚洲精品成人久久69-99精品国产免费久久| 青青草视频成人在线公开-激情中文字幕一区二区三区-亚洲国产精品综合久久网各-日本中文字幕有码高清| 熟女国产精品一区二区三-一区二区三区av这些免费观看-精品国产一区二区二三区在线观看-国产精品一品二区三区日韩| 99精品国产在热久久婷婷人-黄色av一区二区在线-精品一区二区三区中文字幕在线-久久91国产人妻熟女| 美性中文网美性综合网-亚洲最大黄色网在线观看-自偷精品视频三级自拍-97精品伊人久久大香| 午夜精品人妻一区二区三区-亚洲精品成人久久av-成人亚洲av精品入口-高清传媒视频在线观看| 国产精品亚洲精品午夜-欧美日韩成人精品久久二区-自拍偷拍福利视频在线观看-91精品蜜桃一区二区三区| 无套内射在线免费观看-亚洲日本va中文字幕久-日韩免费人妻av一区二区三区-热久久国产最新地址获取| 久热视频在线免费观看-亚洲一区二区日韩综合久久-免费观看在线观看青青草视频-精品一区二区亚洲一区二区血炼| 成人av亚洲男人色丁香-色丁香婷婷综合缴情综-国产男女视频免费观看-日韩有码中文字幕一区八戒| 国内精品欧美久久精品-国产极品尤物美在线观看-日本经典视频一区二区三区在线-国模91九色精品二三四| 美女脱内衣内裤露出咪咪-美女一区二区三区免费观看-国产网红女主播在线视频-久久亚洲春色中文字幕| 成人福利一区二区视频在线-亚洲婷婷综合久久一本伊一区-日本高清午夜一区二区三区-日韩欧美黄色激情视频| 精品人妻一区二区三区三区四区-亚洲中文字幕熟女一区二区-91久久精品国产91性色69-国产精品中文字幕中文字幕| 亚洲一区二区三区四区中文字幕-精品久久久久久蜜臀-国产传媒视频免费观看网站-国产三级在线观看一区二区| 追虎擒龙国语高清在线观看完整版-色婷婷一区二区三区免费-网友自拍在线视频国产-草草久在线视频在线观看| 色综合久久中文综合网亚洲-久久精品午夜亚洲av-男人的天堂av日韩亚洲-91欧美激情在线视频| 精品国产美女av天堂-狼人av在线免费观看-日韩精品人妻中文字幕有码在线-欧美视频亚洲视频自拍偷拍| 精品三级国产三级在线专区-精品一区二区三区视频观看-在线精品日韩亚洲欧一二三区-美女高潮无套内射视频免费| 乱中年女人伦中文字幕久久-国产成人高清免费视频网站-中文字幕亚洲人妻在线视频-中文字幕剧情av在线| 久久噜噜噜精品国产亚洲综合-91精品国产高清久久福利-精品国产一区二区三区麻豆-日本加勒比一区二区在线观看免费| 日韩精品成人一区二区三区-亚洲综合中文字幕第一页-久久伊人亚洲中文字幕-花季传媒视频无限制观看| 亚洲高清日本一区二区三区-日韩极品精品一区二区三区-亚洲成人av在线一区二区-亚洲精品国产精品粉嫩| 国产精品一区二区小视频-欧美亚洲国产精品激情在线-日韩免费视频一区二区三区视频-精品亚洲国产成av人片传媒| 中文字幕在线精品人妻-人妻母乳综合一区二区三区四区-伊人久久婷婷色综合98网-亚洲人精品午夜射精日韩| 台湾香港a毛片免费观看-国产美女口爆吞精的后果-亚洲天堂成人免费在线-国模在线视频一区二区三区| 男女啪啪动态视频免费-日韩精品一区二区高清-日韩在线有码中文字幕-日本免费高清一区二区三区视频| 亚洲国产日韩欧美性生活-开心激情五月婷婷丁香-久久精品国产亚洲av热片-国产日产精品视频一区二区三区| 日本人妻中文字幕久久-色老汉免费在线观看一区-成人国产在线观看网站-欧美日韩国产亚洲一区二区三区| 日韩在线免费av网站-免费啪视频一区二区三区在线观看-久操热在线视频免费观看-91亚洲国产成人精品性色| 四虎国产在线播放精品免费99-一区二区三区中文字幕日本-91国偷自产中文字幕久久-青青草一级视频在线观看| 日本一区二区三区四区高清-91久久香蕉国产熟女-久久精品99国产日本精品-国产粉嫩一区二区三区在线观看| 人妻精品一区二区视频免费-99热视频免费在线观看-亚洲av第一第二第三-乱码人妻精品一区二区三区| 久久99国产精品久久99蜜桃-国产在线精品福利91啪-日本啪啪免费观看视频-免费看的日麻批网站视频| 日韩精品人妻视频一区二区三区-国产经典一区二区三区四区-亚洲中文视频免费在线观看-美女自拍大秀福利视频| 国产精品一区二区三区av麻-蜜桃传媒免费在线播放-久久亚洲中文字幕精品-国产精品白嫩极品在线看| 大奶人妻丝袜中出在线-亚洲一区久久中文字幕-国产成人av剧情自拍网站-嫩草伊人久久精品少妇av|