色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The wear resistance and toughness of carbide woodworking tools are difficult to balance. Usually, tool users can only choose the appropriate grade from many carbide grades based on the specific processing object. Here, we discuss how to further improve the cutting performance of carbide woodworking tools from the tool itself. Currently, the research hotspots on this issue mainly focus on the following aspects:

Improving the grain size of carbide woodworking tools

By refining the grain size of the hard phase, increasing the surface area between grains, and enhancing the bonding force between grains, the strength and wear resistance of carbide?tool materials can be improved. When the WC grain size is reduced to below submicron size, the hardness, toughness, strength, and wear resistance of the material can be improved, and the temperature required for complete densification can also be reduced. The grain size of ordinary carbides is about 3-5 μm, while that of fine-grained carbides is 1-1.5 μm, and that of ultra-fine-grained carbides can be below 0.5 μm. Compared with ordinary carbides with the same composition, the hardness of ultra-fine-grained carbides can be increased by more than 2 HRA, and the bending strength can be increased by 600-800 MPa.

carbides based on ultra-fine WC grains as the matrix, combined with TiAlN PVD coating, can make the cutting edge of the tool highly ductile during interrupted cutting, while also having extremely strong resistance to thermal deformation.

Surface, overall and cyclic heat treatment for carbide woodworking tools

Surface treatment such as nitriding and boriding can effectively improve the wear resistance of carbide?with good toughness. Overall heat treatment can change the composition and structure of the binding phase in carbide?with good wear resistance but poor toughness, reduce the adjacency of WC hard phase, and thus improve the strength and toughness of carbide. The cyclic heat treatment process can relieve or eliminate the stress between grain boundaries, which can comprehensively improve the performance of carbide?materials.

Improving cutting performance by adding rare metals Adding rare metal carbides such as TaC and NbC to carbide?materials can form a complex solid solution structure with the existing hard phase WC, further strengthen the hard phase structure, and also suppress the growth of hard phase grains and enhance the uniformity of the structure. This is highly beneficial for improving the overall performance of carbide. In the ISO standard P, K, and M carbide?grades, there are carbides added with Ta (Nb) C.

carbide woodworking tool

Adding rare earth elements to carbide material

Adding a small amount of rare earth elements such as yttrium to carbide materials can effectively improve the toughness and bending strength of the material, and also improve the wear resistance. This is because rare earth elements can strengthen the hard and binding phases, purify grain boundaries, and improve the wetting of carbide solid solution on the binding phase. carbides added with rare earth elements are most suitable for rough machining, and with abundant rare earth resources in China, they have broad prospects for application in the production of carbide woodworking tools.

Coated carbide woodworking tools

A thin layer of wear-resistant metal compounds, such as TiN and TiC, can be deposited on a tough carbide?substrate using methods such as CVD (chemical vapor deposition), PVD (physical vapor deposition), PVCD (plasma-enhanced chemical vapor deposition), and HVOF (high-velocity oxy-fuel spraying). TiC has high hardness (HV3200) and good wear resistance, so the coating thickness is generally 5-7μm. TiN has lower hardness (HV1800~2100) and lower adhesion to the substrate, but it has good thermal conductivity and high toughness. The coating thickness can reach 8-12μm, and it can combine the toughness of the substrate with the wear resistance of the coating, thereby improving the overall performance of the carbide?tool. Coated carbide?tools have the following advantages:

  1. Good wear resistance and heat resistance, especially suitable for high-speed cutting;
  2. Coated carbidetools have strong resistance to chipping and notch wear, and the tool shape and groove shape are stable;
  3. The chip breaking effect and other cutting performance are good, which is beneficial to the automatic control of the machining process.
  4. After passivation and refining treatment, the substrate of coated carbide tools has high dimensional accuracy, which can meet the requirements of automatic machining for tool change positioning accuracy. However, the use of coating methods still cannot fundamentally solve the problem of poor toughness and impact resistance of carbide substrate materials.

Nanocoating

Nanocoating is a rapidly developing new coating technology in recent years. The grain size of the coating material is generally below 100 nm and it has good cutting performance. In the coating, the surface smoothness of the coating is improved by grain refinement technology, so that the coating surface is smooth, which can improve the anti-friction and anti-adhesion ability of the coating tool. A CVD coating composed of nanoscale TiCN with inhibited crystal growth and nanoscale Al2O3 with inhibited crystal growth can be selected for the front cutting surface. The coating has extremely high toughness and wear resistance. Applying ultra-fine grain TiCN on a special carbide substrate improves the adhesion between the coating and the substrate. Then, an ultra-fine and super smooth FF aluminum-based film is coated on top of it, which increases the surface hardness by 30% and reduces the roughness value by 50%. Compared with ordinary carbides, nanocoating improves processing efficiency by 1.5 times and extends the life of carbide woodworking tools by more than 2 times.

5 Ways to Improve the Cutting Performance of Carbide Woodworking Tools 2

Diamond Coatings

Coating the front surface of a carbide?insert with a CVD diamond film (20μm thick) is a good choice. Although coating peeling can become a serious problem, as long as the coating does not peel, tool wear can be ignored and maintained at 40-50μm. The milling test of medium-density fiberboard using a diamond-coated carbide?insert shows that the diamond film has different degrees of peeling, but the unpeeled film always provides good protection. The tool wear resistance of the diamond coating is nearly twice as high as that of the uncoated one.

With the improvement of coating technology and equipment, the adhesion between the diamond film and the tool substrate will be further improved, and the problem of film peeling will be improved. At present, diamond-coated carbide?materials have been used to manufacture tools for processing reinforced flooring, which is used to cut the aluminum oxide wear-resistant layer on the surface of the reinforced flooring, and the effect is good. However, the purity of CVD diamond polycrystalline film is very high, its hardness (HV9000~1000) is close to natural diamond, and its processability is poor. It is difficult to achieve conventional mechanical processing or electrochemical corrosion. Therefore, diamond-coated carbide?materials are suitable for manufacturing insert blades that do not require regrinding.

5 способов улучшить режущую способность твердосплавных деревообрабатывающих инструментов 3

Вывод

Carbide woodworking tools have become the main variety in the wood processing industry and will continue to occupy an important position in wood cutting for a considerable period in the future. With the continuous improvement of various carbide performance improvement technologies and coating technologies, the cutting performance of carbide woodworking tools will continue to improve.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

蜜臀精品国产亚洲av尤物-日韩人妻少妇中文字幕-赶碰97在线公开视频-亚洲欧美日韩天堂综合| 久久只有这里的精品69-亚洲欧洲av黄色大片-人妻少妇被黑人粗大爽-成人性生交大片免费看av| 水蜜桃精品视频在线观看-日本国产一区二区在线观看-69久久夜色国产精品69-免费观看亚洲成人av| 亚洲av成人午夜福利-青青草华人在线视频观看-久久99国产亚洲高清-中文字幕一区二区三区乱码人妻| 2020天天操夜夜操-亚洲色图视频在线观看,-亚洲色图专区另类在线激情视频-岛国精品毛片在线观看| 亚洲国内精品一区二区在线-亚洲国产成人精品青青草原-精品在线视频免费在线观看视频-亚洲美女激情福利在线| 亚洲国产精品一区二区三区视频-午夜福利国产一区二区在线观看-亚洲欧美成人中文字幕-青青草好吊色在线视频| 五月六月丁花香激情综合网-久久这里只有精品好国产-很淫很堕落第一版主网-亚洲精品欧美精品国产精品| 成人在线自拍偷拍视频-国产剧情av中文字幕-久久国产劲爆内射日本-劲爆欧美中文字幕精品视频| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 青草精品在线视频观看-色呦呦在线观看中文字幕-国产一区二区日本在线观看-草青青在线视频免费观看| 华人精品在线免费观看-国产熟女精品一区二区三区-国产成人午夜视频网址-女女同性女同一区二区三区九色| 偷拍日韩女生厕所尿尿-水蜜桃一区二区三区四区-亚洲成人色黄网站久久-久久久国产综合午夜精品| 91精品啪在线观看国产91蜜桃-国产国拍亚洲精品av在线-日韩在线亚洲清纯av天堂-久久亚洲国产精品五月天| 国产一级特黄高清大片-欧美精品一区二区三区精品-久久亚洲av成人网人人动漫-日本熟女网站一区二区三区| 国产精品内射在线免费看-99久久国产精品一区二区三区-久久国产精品午夜福利-亚洲av精品一区二区三区| 日本在线无乱码中文字幕-国产美女自拍视频精品一区-精品人妻中文字幕一区二区三区-精品国产一级二级三级| 久久国产精品国产婷婷-四虎在线观看最新入口-天堂中文资源在线天堂-久久亚洲av日韩av天堂| 亚洲女人性开放视频免费-亚洲婷婷精品久久久久-亚洲中字字幕中文乱码-韩日av不卡一区二区三区| 日韩网激情视频在线观看-国产午夜98福利视频在线观看-国产精品尤物极品露脸呻吟-日韩手机在线视频观看成人| 换脸av一区二区三区-少妇精品亚洲一区二区成人-亚洲熟女综合一区二区三区-国产91久久精品成人看| 亚洲永久在线宅男天堂-精品亚洲成a人在线看片-国产精品人成免费国产-亚洲欧洲国产精品自拍| 一区二区三区四区蜜桃av-国产av无套内射成人久久-亚洲第一大片一区二区三区三州-国产福利黄色片午夜在线观看| 亚洲不卡福利在线视频-亚洲一级特大黄色小视频-日本久久一级二级三级-国产精品剧情av在线观看| 男人的精品天堂一区二区在线观看-婷婷久久香蕉毛片毛片-久久视频在线观看夫妻-亚洲国产一区久久yourpan| 国产精品久久一区二区三区-四虎国产精品亚洲精品-最新中文字幕日本久久-午夜性色福利在线视频| 亚洲欧洲偷拍自拍av-日韩午夜福利剧场久久-午夜福利成人在线视频-91午夜福利在线观看精品| 午夜福利国产原创精品-久久综合激情日本熟妇-国产熟女50岁一区二区-国产另类视频一区在线| 国产自拍在线视频免费观看-精品午夜福利一区二区三区-日韩av在线免费观看毛片-国产三级黄色片在线观看| 国产精品一区二区蜜桃视频-四十路五十路熟女丰满av-成人av天堂中文在线-亚洲精品成人国产在线| 男女激情四射午夜福利视频网站-人成午夜免费毛片直接观看-日本女优在线观看一区二区-青草国内精品视频在线观看| 人妻少妇中文字幕久久精品-水蜜桃av一区二区三区在线观看-日韩熟女精品一区二区三区-久久国产综合激情对白| 麻豆视频传媒在线免费看-亚洲性码不卡视频在线-岛国av色片免费在线观看-久久久国产精品视频大全| 精品人妻中文字幕有码在线-亚洲欧美一区二区成人精品久久久-亚洲第一人伊狼人久久-亚洲国产欧美精品在线观看| 成人高清视频在线播放-91麻豆免费观看视频-久久婷香五月综合色吧-自拍自产精品免费在线| 91精品久久综合熟女-日产精品毛片av一区二区三区-国产精品永久在线播放-一区二区中文字幕在线视频| 欧美日韩国产在线三级-少妇人妻精品一区二区三-调教熟妇女同在线观看中文字幕-亚洲成av人片一区二区三区不卡| 极品美女色诱视频在线-欧美久久天天综合香蕉伊-久久精品人人澡夜夜澡-亚洲一区二区三区四区伦理| 日本大黄高清不卡视频在线-亚洲色图视频在线观看免费-国内精品自拍视频在线观看-av免费在线观看看看| 人妻少妇av免费久久蜜臀-欧美国产日韩在线一区二区-美女被啪啪到深处好爽无套-日韩av一区在线资源播放| 99热久久热在线视频-久久精品国产亚洲av成人男男-国产精品日韩精品久久99-中文字幕在线日本乱码|