色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Why choose cemented carbide saw blades to cut high-temperature alloys?

Currently, in mechanical manufacturing, due to the rapid updating and upgrading of products, there are higher requirements for the selection of parts. Particularly in the manufacturing of industries such as aerospace, large power stations, and ships, some difficult-to-machine materials like high-temperature alloys, titanium alloys, heat-resistant stainless steels, and composite materials have been widely used. Among them, the efficient processing of widely used and commonly employed high-temperature alloy materials has received more attention.

Using high-performance high-speed steel bimetal saw blades (with M42 as the edge material) to cut difficult-to-machine high-temperature alloys results in low cutting efficiency and a very short service life. Subsequently, saw blades made of cemented carbide with high hardness were chosen. Through testing and practical application, cemented carbide saw blades have achieved significant results in the blanking processing of high-temperature alloys, meeting the requirements of production schedules.

How Do Cemented Carbide Saw Blades Cut High-Temperature Alloys? 2

Содержание Спрятать
4 Use of Cemented Carbide Saw Blades Using cemented carbide saw blades for sawing and blanking high-temperature alloy materials is an efficient and ideal process method. However, improper use can lead to rapid wear of the saw blade’s teeth and even cause the saw belt to break, which not only fails to achieve the expected results but may also result in significant losses. Therefore, the correct use of cemented carbide saw blades is very important. There are strict requirements for using saw blades, which are mainly in the following three aspects:

Design and Selection of Cemented Carbide Saw Blades

Cemented carbide saw blades have different materials and structures. In practical applications, we have found that not every type of cemented carbide saw blade can achieve good results in the blanking processing of high-temperature alloys. Only by making reasonable choices and using them properly can the desired results be obtained. Therefore, we have selected and compared four aspects: the structure of the saw blade, the form of the tooth shape, the material, and the reasonable selection of cutting parameters. The details are as follows:

Tool Structure

Cemented carbide saw blades typically adopt a tipped and welded structure. The tips of the teeth on cemented carbide saw blades have the advantages of high hardness, high wear resistance, and high fatigue resistance. However, their main drawbacks are brittleness, low strength, and poor resistance to impact.

After testing and comparative application (especially based on the final sawing blanking data comparison results), we believe that for the blanking of high-temperature alloys, the saw blade structure is best suited with coarse teeth and variable pitch cemented carbide saw blades. The reason we believe this is optimal is that during the sawing blanking of high-temperature alloys (particularly nickel-based high-temperature alloys), the chips have strong adhesion, making it difficult for the chips to be discharged smoothly. The intermittent formation and disappearance of built-up edge can easily cause the cutting edge to chip and the tool’s flank wear to intensify. Choosing coarse teeth not only increases the strength of the cutting edge but also enlarges the chip space, facilitating the use of a larger feed rate to improve cutting efficiency. The adoption of variable pitch can reduce cutting noise and vibration, making the cutting process more stable, which is beneficial for improving the durability of the tool. A schematic diagram of the variable pitch saw blade structure can be seen in Figure 1.

How Do Cemented Carbide Saw Blades Cut High-Temperature Alloys? 3

Selection of Tool Tooth Shape

Common tooth shapes for saw blades include standard teeth, hook-shaped teeth, and trapezoidal teeth, as shown in Figure 2.

  1. Standard teeth have a cutting approach angle g=0°, with the tooth face perpendicular to the substrate, and the tooth slots are deep and narrow.
  2. Hook-shaped teeth have a cutting approach angle g=5°~10°, with the tooth slots deep and wide.
  3. Trapezoidal teeth have a cutting approach angle g=10°~15° and a back angle a=6°~8°, providing high tooth strength, suitable for heavy cutting.

For the processing of high-temperature alloy materials, in addition to selecting high-strength cemented carbide materials for the saw blades, the choice of tooth shape is also very important. Trapezoidal teeth have sufficient strength and are less prone to chipping during cutting. Due to the larger approach angle, the cutting resistance is also smaller than that of standard straight teeth. Practical verification has also proven that the choice of trapezoidal teeth results in better cutting performance compared to the other two tooth shapes.

 

Tool Material Grades

The grades of cemented carbide suitable for cutting high-temperature alloy materials mainly fall into two categories: Type M and Type K according to the ISO standard (now recommended as Type S). Based on the results of sawing comparison tests, the improvement in cutting efficiency between the two types of tool grades is not significant. However, in terms of sawing service life, the saw blades made of material equivalent to grade M15-M30 have a 15%~20% longer life span compared to those made of material equivalent to grade K05-K20 (when processing high-temperature alloys of the same specification and grade).

 

Selection of Cutting Parameters

The rational selection of cutting parameters is crucial for the blanking of high-temperature alloys. Proper cutting parameters ensure normal blanking of workpieces, significantly improve cutting efficiency and tool life, and also reduce the harsh noise generated by the adhesion and friction of chips between the tool and the workpiece during blanking. Based on our experimental application results for various nickel-based high-temperature alloy grades (considering efficiency and tool life comprehensively), the selected rational cutting parameters are as follows:

Cutting linear speed: 15~20 m/min

Feed rate (material removal rate): 6~8 cm2/min

The above cutting parameters have been determined through long-term experimental applications and are considered to be economically viable.

How Do Cemented Carbide Saw Blades Cut High-Temperature Alloys? 4

Actual Tool Benefits

Through the aforementioned four aspects of work, the use of cemented carbide saw blades for processing high-temperature alloys has achieved significant economic effects in the steam turbine factory:

After testing and comparing multiple data results, the current cemented carbide saw blades used for processing high-temperature alloys have improved the cutting efficiency by 5 to 8 times compared to the previously used bimetal saw blades. For example, when processing a GH4169 nickel-based high-temperature alloy blank with dimensions of 140×245, the original M42 bimetal saw blade took about 6 to 8 hours to blank one piece. However, with the selected cemented carbide saw blade for processing high-temperature alloys, the blanking time for one workpiece is only about 1 hour. Moreover, what is more prominent is the improvement in tool life.

When processing blanks of the above-mentioned grades and specifications, the original M42 bimetal saw blade could only blank one piece, whereas the current cemented carbide saw blade can generally blank 20 to 24 pieces (under reasonable cutting parameters and proper operation, one saw blade can even blank 40 to 50 pieces). Although the price of the current cemented carbide saw blade is about 5 times higher than that of the bimetal saw blade, in terms of cost-performance ratio and comprehensive economic benefits (especially as demonstrated by the comparison of the above typical example), using cemented carbide saw blades to process high-temperature alloys is very cost-effective. It achieves the goal of low cost, high tool life, and efficient processing.

carbide saw blade
carbide saw blade

Use of Cemented Carbide Saw Blades
Using cemented carbide saw blades for sawing and blanking high-temperature alloy materials is an efficient and ideal process method. However, improper use can lead to rapid wear of the saw blade’s teeth and even cause the saw belt to break, which not only fails to achieve the expected results but may also result in significant losses. Therefore, the correct use of cemented carbide saw blades is very important. There are strict requirements for using saw blades, which are mainly in the following three aspects:

Requirements for the Machine Tool
a. The sawing machine must have good rigidity and a certain level of accuracy to meet the requirements for stable processing with cemented carbide saw blades.
b. Select a sawing machine with a suitable power and specification based on the diameter (cutting area) of the workpiece.
c. The machine tool must be equipped with a good chip removal, cooling system, and saw blade guiding device.

Requirements for Operating the Use of Cemented Carbide Saw Blades
a. The workpiece must be clamped securely, and after clamping, check whether the clamping points (surfaces) are in the middle and upper part of the workpiece to ensure stability during processing.
b. Break-in of the saw blade: New saw blades must go through a break-in period before normal cutting to prevent premature damage to the teeth. After the break-in process, the teeth will wear normally; without it, the teeth will be destroyed prematurely. The feed rate during the break-in period should be 20%~30% of the normal feed rate.
c. Selection of tension force:Excessive tension can cause the saw belt to break; insufficient tension can damage the saw belt or cause cutting deviation. When using a cemented carbide band saw, the tension must be adjusted to 2200~2500 kg/m2.
d. Cooling and chip flushing during cutting: When using a cemented carbide band saw to blank high-temperature alloy materials, in order to reduce the cutting temperature, cutting resistance, and extend the life of the band saw, water-based extreme pressure cutting fluid must be continuously applied during sawing. Additionally, the chips produced during sawing should be cleaned synchronously with a steel brush.

Rational Selection of Cutting Parameters
For blanking high-temperature alloy blanks, the selection of cutting parameters directly ensures the normal progress of sawing. Reasonable cutting parameters also achieve higher cutting efficiency and tool life. Due to the poor machinability of high-temperature alloy materials, the cutting parameters should be much lower compared to other alloy steel materials. Practice has proven that the cutting parameters recommended in the above examples are more reasonable. If the feed rate (material removal rate) is too low, the wear on the flank of the tool will increase. Moreover, increasing the cutting speed and feed rate will also increase the cutting force and cause the chip slot to clog, leading to chipping and reduced tool life.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

国产精品99一区二区三区-伦理激情婷婷综合五月天-综合久久av一区二区三区-99精品国产在热久久| 欧美日韩国产激情综合-九九精品国产亚洲av日韩-国产午夜激情免费视频-日本厕所偷拍尿尿视频| 亚洲综合另类精品小说-国产不卡一区二区三区观看评价-亚洲中文字幕有码道一-一个成人永久免费视频| 精品人妻一区二区三区免费-亚洲国产精品久久一区二区-国内久久偷拍视频免费-蜜桃视频在线观看网址| 亚洲av午夜精品久久看一区-日韩欧美91麻豆精东-久久一区二区三区在线观看-国产黄色人人爱人人做| 国产一级片内射在线视频-亚洲少妇无套内射激情-成人午夜性色福利视频-夜夜嗨视频无套实战丰满少妇| 亚洲a级一区二区三区-人妻中文字幕精品在线-日韩精品中文字幕人妻系列-香蕉久久最新精品视频| 青草精品在线视频观看-色呦呦在线观看中文字幕-国产一区二区日本在线观看-草青青在线视频免费观看| 男人的精品天堂一区二区在线观看-婷婷久久香蕉毛片毛片-久久视频在线观看夫妻-亚洲国产一区久久yourpan| 禁播的黄色片精品久久-人妻少妇精品视频久久-巨乳人妻的诱惑在线看-亚洲欧美日韩中文久久| 日韩bd高清电影一区二区-久久亚洲国产精品久久-亚洲精品国产精品av-大胸少妇av网站在线播放| 久久精品极品盛宴免视-五月综合激情中文字幕-精品中文字幕一区二区精彩-中文字幕熟女日韩人妻| 日韩熟女av在线观看-中文字幕人妻丝祙乱一区三区-亚洲国产精品第一区二区三区-欧美制服丝袜一区二区三区| 91精品久久综合熟女蜜臀-美女扒开内裤露出p毛-日韩欧美一区二区三区四区在线视频-亚洲成人网日韩精品在线观看| 日韩久久久久久中文字幕-九九热视频精选在线播放-亚洲最大黄色成人av-亚洲最大av一区二区| 久久热大香蕉在线视频-nana在线观看高清视频 视频-久久最新视频在线观看-日韩高清不卡视频在线观看| 日韩av观看一区二区三区四区-美丽的蜜桃3在线观看-久久人妻少妇嫩草av-欧美亚洲另类久久久精品| 成人av亚洲男人色丁香-色丁香婷婷综合缴情综-国产男女视频免费观看-日韩有码中文字幕一区八戒| 少妇被爽到高潮喷水在线播放-国产精品中文字幕在线不卡-中文字幕不卡一区二区三区-精品国产一二三区在线观看| 国产精品久久中文字幕网-国产亚洲av无色肉丝网站-自拍偷拍亚洲精品偷一-日本久久一区二区三区| 日韩毛片精品毛片一区到三区-四虎国产精品久久免费观看-国产网站在线观看91-亚洲熟妇av不卡一区二区三区| 亚洲国产日韩欧美性生活-开心激情五月婷婷丁香-久久精品国产亚洲av热片-国产日产精品视频一区二区三区| 一本色道亚州综合久久精品-91麻豆国产专区在线观看-一级二级三级国产视频-熟女av天堂免费高清| 国产亚洲精品第18页-久久精品理论午夜福利-99久久91热久久精品免费看-国产成人精品国产成人亚洲| 欧美性色婷婷久久久精品-久久这里只有精品国产宅男av-久久男女爱爱视频免费观看-另类福利亚洲丝袜激情在线| 久久亚洲中文字幕少妇毛片-91蜜臀精品国产自偷在线-日韩av在线播放天堂网-亚洲在线精品一区二区三区| 久久精品国产亚洲av五区-日韩麻豆视频在线观看-亚洲欧洲国产成人综合在线-美利坚合众国亚洲视频| 亚洲国产一区二区精品专-人妻被黑人侵犯中文字幕夜色-国模午夜写真福利在线-成人自拍偷拍在线观看| 国产一区二区三区精品视频导航-精品国产av网站大全-男女草逼视频网站大全-国内成人在线激情视频| 国内精品一区二区三区香蕉-熟女少妇熟女高潮一区二区-亚洲乱码国产乱码精品精男男-国内人妻自拍偷拍视频一区| 久久女婷五月综合色啪色老板-国内不卡的一区二区三区中文字幕-在线观看一区二区三区日韩-五月天丁香婷婷狠狠狠| 人日本中文字幕免费精品-日本口爆吞精在线视频-玖玖玖玖视频在线观看-国产精品内射在线播放| 熟女人妻中文字幕在线视频-91久久成人精品探花-国产精品黄色一区二区三区-99精品国产99久久久久97| 国产 av 一区二区三区-日韩黄色三级三级三级-久久精品视频这里只有精品-日韩精品中文字幕亚洲| 久久成人三级一区二区三区-自拍视频在线观看成人-成人日韩在线中文字幕有码-国产黄色盗摄在线观看| 精品人妻一区二区三区久久91-久久精品亚洲国产av搬运工-日本熟女人妻一区二区三区-亚洲国产精品高清线久久| 亚洲手机在线视频亚洲毛-欧美91精品国产自产在线-国产一区二区中文字幕在线视频-国产av91在线播放| 九九热久久这里有精品视频-2020亚洲欧美日韩在线-国产精品久久无遮挡影片-亚洲国产高清在线不卡| 亚洲欧洲偷拍自拍av-日韩午夜福利剧场久久-午夜福利成人在线视频-91午夜福利在线观看精品| 国产特级黄色录像视频-成人亚洲精品专区高清-国产97在线免费观看-91精品青草福利久久午夜| 国产福利亚洲精品精彩在线-日韩在线精品视频免费-亚洲成人国产精品av-日本不卡一区二区三区四区视频|