色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Sintering of carbide?is a crucial step in the production of carbide. During the pressing process of carbide?powder, the bonding between powder particles mainly relies on the pressure exerted during pressing, and the powder particles cannot bond with each other due to the lack of yield tension. The pressed compact exists in a porous state. Liquid phase sintering method of powder metallurgy is required for sintering. There are mainly several sintering methods for carbide: hydrogen sintering, vacuum sintering, low-pressure sintering, and hot isostatic pressing. The equipment also varies according to the different sintering processes and methods.

The State of Carbide Compact Formation

After the carbide?compact is formed, it exists in a porous state. During the wet grinding process, the shape of WC is subjected to strong impacts, resulting in increased surface energy and enhanced reactivity. The longer the contact time of the compact with air, the greater the degree of oxidation, requiring more carbon for reduction. With the theoretical carbon content of carbide?remaining at 6.128%, the ratio of oxygen atoms to carbon atoms is 12/16. Therefore, for every additional unit of oxygen, it will consume 3/4 of the carbon content. This leads to the formation of the η phase more easily after alloy sintering.

The Existence of Oxygen in Carbide Mixtures

The oxygen content in the carbide?mixture can be considered to exist in three forms: occluded oxygen, cobalt surface oxygen, and oxygen in WO2 or WO3. Since the oxygen content measured by chemical oxygen determination includes the total of these three types of oxygen, it is difficult to determine their respective proportions in production. Therefore, this poses challenges to production. Additionally, oxygen enrichment in the environment is ubiquitous, so it is essential to manage each process reasonably in actual production.

Occluded Oxygen

Exists in the interstices of the compact and on the surface of the compact and mixture; generally removed by vacuum evacuation at the beginning of sintering, so it does not affect alloy sintering.

Cobalt Surface Oxygen

Due to the high susceptibility of cobalt to oxidation at room temperature, oxidation intensifies with increasing temperature. After wet grinding and subsequent drying, a layer of oxide film forms on the cobalt surface; the longer the material or compact is stored before sintering, the higher the degree of cobalt oxidation. This portion of the oxide requires carbon for reduction; before the temperature reaches 600°C during sintering, reduction mainly relies on free carbon, and the remaining unreduced oxides must be reduced by combined carbon. This portion of oxygen is critical to the carbon-oxygen balance during alloy sintering and is difficult to control.

WO2 or WO3 Oxygen

Also known as compound oxygen; before the carbonization of WC, WO3 gradually transforms into WO2 and then into tungsten powder (W), followed by carbonization. Some oxides may remain incompletely reduced or partially oxidized due to storage time, from W → W2C → WC, and may persist even after completion. Alternatively, inadequate protection during storage may lead to oxidation. These oxide residues are referred to as compound oxygen; the reduction temperature generally occurs before 1000°C, but severe oxidation may delay reduction until 1200°C. This oxide residue consumes carbon significantly, narrowing the margin for carbon levels and making it difficult to control sintering carbon content, thereby complicating the achievement of sufficient liquid phase formation.

 

The Form of Carbon in carbide

The carbon content in carbide?mainly exists in three ways: WC stoichiometry, carbon increment from binder decomposition, and carbon infiltration from furnace gases.

Generally, WC is adjusted according to the theoretical carbon content of carbide; reasonable carbon adjustment is made based on small samples before wet grinding; in the wax process, the carbon content is adjusted by subtracting the amount of carbon infiltrated from furnace gases and adding the amount of carbon consumed by oxides. In the rubber process, one-third of the rubber weight should be subtracted.

Carbon Increment from Binder Decomposition

During debinding and sintering, whether using wax, PEG, or rubber, there is more or less decomposition; thus, carbide?can gain carbon, although the amount of carbon increase varies with different binders. Since wax mainly relies on evaporation, it is generally considered not to increase carbon content. On the other hand, rubber and PEG rely on decomposition, with rubber decomposition occurring at higher temperatures, resulting in more carbon increase.

carbide metal

Carbon Infiltration from Furnace Gases

Since most heating elements, insulation layers, sintering plates or boats in carbide?sintering furnaces are made of graphite products, their effects become evident at 600°C; when sintering temperature rises above 1200°C, a large amount of carbon and CO released from graphite exacerbate carbon infiltration into carbide.

Impact of Cobalt on carbide?Properties

Cobalt has a hexagonal close-packed crystal structure, making it highly reactive and prone to oxidation. In WC-Co alloys, cobalt acts as the binder metal. When the cobalt phase exhibits the ε-Co crystal structure, with fewer slip planes (theoretically no more than 3), the alloy’s toughness is low. However, when the cobalt phase exhibits the α-Co crystal structure, the maximum number of theoretical slip planes can increase to 12, resulting in stronger fracture resistance. With increasing sintering temperature, the cobalt crystal structure shifts from hexagonal close-packed to face-centered cubic; the reverse occurs during cooling. Since tungsten dissolves more in cobalt, playing a “nailing” role, the transformation of crystal structure during cooling varies with the amount of tungsten dissolved.

Up to 1% of cobalt can dissolve in WC at room temperature; when the sintering temperature reaches between 400°C and 800°C, vigorous diffusion and rearrangement of cobalt occur. During this period, a lower amount of free carbon is more conducive to increased slip planes; this is advantageous in wax processes. However, rubber processes require completion of decomposition around 600°C, affecting the effective occurrence of cobalt phase slip planes.

At 1000°C during sintering, the oxide has almost completed the reduction process, so this stage is referred to as oxygen-free sintering. Carbon content in carbide?is generally tested at this stage; however, the so-called oxygen-free carbon contains only a minimal amount of oxygen. Nonetheless, oxide on the cobalt surface has been completely reduced by this point, and the edges of the cobalt phase have produced fewer liquid phases. At this stage, the compact has acquired some hardness, known as the pre-sintering stage. Products at this stage can undergo plastic processing if necessary.

The Sintering Mechanism of?Carbide 2

Liquid Phase in Carbide

Theoretically, the liquid phase in WC-Co alloys appears at 1340°C. The temperature at which the liquid phase sufficiently appears varies with carbon content. As sintering temperature rises, the amount of liquid phase increases; fine WC particles gradually form a liquid phase. Intense shrinkage occurs in the product, reducing the distance between WC particles. Fine WC particles are gradually melted by larger particles, resulting in coarser WC particles. This phenomenon is known as grain growth. Grain growth during sintering is inevitable, particularly in ultrafine or submicron WC, where grain growth is more pronounced. To effectively inhibit excessive grain growth, inhibitors such as VC, TaC, and Cr3C2 can be added.

After sintering, undissolved WC and W2C rapidly precipitate, followed by ternary eutectic formation, laying the foundation for the alloy. The longer the cooling time above 1200°C, the more complete the precipitation, but the greater the opportunity for grain growth.

Механизм спекания карбида 3

Вывод

The pursuit of ternary eutectic structures is the most critical aspect of sintering in WC-Co carbide. Ternary eutectic structures form the fundamental framework of carbide. In the W-C-Co ternary system, effective handling of WC grain growth, allowing more tungsten to dissolve in cobalt without decarburization, thereby improving the durability and toughness of carbide, is always the goal of alloy manufacturers. A German technical expert once said: “The essence of sintering lies in ‘high temperature and low carbon’.”

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

四虎永久在线精品免费青青-久久久久久久 国内精品-国产精品四虎永久免费视频-男人天堂av免费观看| 激情六月综合激情六月-韩国国产日韩在线观看视频-久久精品国产亚洲av高清色-亚洲熟女乱码一区二区三区| 亚洲日本精品国产第一区二区-国产一级二级三级大胆视频-片黄片色日韩在线观看免费-五月综合婷婷中文字幕| 欧美高清视频在线高清观看-四虎最新在线播放视频-亚洲中文字幕永久在线全国-亚洲国产av成人精品成人| 欧美av黄片在线观看-黄片国产一级片在线观看-国产精品黄色精品黄色大片-一区二区三区国产日本欧美| 精品视频在线观看免费一区二区-哪里可以看国产视频一区二区三区-亚洲天堂av在线免费观看-国产大片网站在线观看| 日本高清不卡码一区二区三区-国产性色av高清在线观看-亚洲黄色免费在线观看网站-亚洲性视频免费视频网站| 日本高清不卡码一区二区三区-国产性色av高清在线观看-亚洲黄色免费在线观看网站-亚洲性视频免费视频网站| 国产一区二区中文字幕在线观看-人妻少妇被粗大爽视频-开心五月婷婷综合网站-国产精品久久国产精麻豆| 日本a亚洲中文字幕永远-美女极度色诱视频国产-国产熟女另类激情在线-高潮少妇高潮少妇av| 91久久国产亚洲精品-亚洲第一区二区三区女厕偷拍-国产在线精品中文字幕-久久老熟妇精品免费观看| 国内一级一厂片内射视频播放磨-国产乐播传媒在线观看-让你操水蜜桃在线观看-深夜三级视频在线观看| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 国产福利一区在线观看蜜臀av-最新天堂中文在线官网-成人精品天堂一区二区三区-国产精品久久久久久久人貌| 日本一区二区免费电影院-亚洲精品成人av观看-国产级一片内射视步页-日韩高清在线亚洲专区视频| 开心五月激情五月综合-国产88精品久久久久久-乱人伦精品视频在线观看-秘社一区二区三区一午夜日本| av网站在线观看网站-最新国产欧美精品91-国产一区二区三区在线导航-日韩高清在线中文字幕一区| 亚洲欧洲偷拍自拍av-日韩午夜福利剧场久久-午夜福利成人在线视频-91午夜福利在线观看精品| 亚洲日本精品国产第一区二区-国产一级二级三级大胆视频-片黄片色日韩在线观看免费-五月综合婷婷中文字幕| 亚洲黄色精品在线播放-国产精品对白在线播放-日韩熟女熟妇久久精品综合-人妻人妻少妇在线系列| 天天射天天插天天色综合-亚洲一二三四区中文字幕-97视频精品在线观看-久久婷婷激情五月综合色| 日韩av毛片免费播放-国产999热这里只有精品-亚洲第一精品中文字幕-欧美特黄免费在线观看| 正在播放会所女技师口爆-久热久热精品在线视频-久久久精品蜜桃久久九-亚洲精品无吗无卡在线播放| 国产视频深夜在线观看-在线播放亚洲欧洲亚洲-不卡日韩av在线播放-国产午夜视频在线观看| 午夜av毛片在线观看-青草精品视频在线观看-亚洲av中文字字幕乱码综合-午夜av一区二区三区中文字幕| 亚洲av优女天堂熟女美女动态-激情免费视频一区二区三区-一区二区三区国产日韩av-最新国产内射在线免费看| 岛国精品一区二区三区-国产一区二区三区观看不卡av-四虎三级在线视频播放-亚洲乱妇熟女爽到高潮| 久热免费观看视频在线-久久精品免费看国产成人-91极品女神嫩模在线播放-青草视频在线观看久久| 在线观看亚洲天堂成人-亚洲大片久久精品久久精品-日韩在线免费观看毛片-成年大片免费视频播放| 亚洲国产综合成人久久-日本一区二区三区精彩视频-激情四射五月天亚洲婷婷-人妻高清视频一区二区三区| 四虎国产在线播放精品免费99-一区二区三区中文字幕日本-91国偷自产中文字幕久久-青青草一级视频在线观看| 亚洲av成人精品爽爽-国产麻豆91在线播放-国产精品久久精品久久精品-蜜臀久久综合一本av| 日韩黄色精品中文视频-久久精品国产亚洲懂色-欧洲美女日韩精品视频-国产一区二区三区精品愉拍| 国产精品国产亚精品不卡-欧美淫淫基地电影网站-亚洲高清精品人妻偷拍-四虎精品永久在线播放| 国产在线一区二区三区不卡-久久精品女人毛片水多国产-无人区一码二码三码四码区免费-日韩亚洲国产成人在线| 亚洲少妇视频免费观看高清-亚洲午夜福利在线播放-偷拍偷窥精品视频在线-黄色大片国产免费永久网站| 亚洲欧洲偷拍自拍av-日韩午夜福利剧场久久-午夜福利成人在线视频-91午夜福利在线观看精品| 亚洲乱码中文字幕综合-欧美日韩亚洲综合久久精品-美女隐私无遮挡免费网站-国产精品激情av在线播放| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 99在线精品偷拍视频-国产精品粉嫩在线播放-国产精品极品在线91-中文字幕有码在线亚洲| 国产精品剧情一区在线观看-精品伊人久久大香线蕉-一起草视频在线播放观看-精品少妇人妻av一区二区蜜桃|