色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The temperature generated within the cutting zone during metal cutting can reach as high as 800 to 900 ℃. Within this cutting zone, the cutting edge deforms the workpiece material and removes it. In continuous turning operations, heat is generated in a stable linear manner. In contrast, milling cutters intermittently engage and disengage with the workpiece material, causing the temperature of the cutting edge to alternate between rising and falling.

The components of the machining system absorb the heat generated during the metal cutting process. Typically, 10% of the heat enters the workpiece, 80% goes into the chips, and 10% enters the tool. Ideally, most of the heat is carried away by the chips, as high temperatures can shorten the tool life and damage the machined parts.

Let’s take milling as an example to analyze the factors that affect cutting heat and tool life, as well as how to improve them. The different thermal conductivity of the workpiece material and other machining factors significantly influence the distribution of heat. When machining a workpiece with poor thermal conductivity, more heat is transferred to the tool. Materials with higher hardness generate more heat during machining compared to materials with lower hardness. In general, higher cutting speeds increase heat generation, and higher feed rates increase the area of the cutting edge affected by high temperatures.

What are the 5 factors that influence the heat generation in cutting processes? 1

In intermittent cutting conditions, where milling operations are predominant, the selection of tool engagement arc, feed rate, cutting speed, and cutting edge geometry all have an impact on the generation, absorption, and control of heat.

Arc of engagement

Due to the intermittent nature of the milling process, cutting teeth only generate heat during a portion of the machining time. The percentage of cutting time for the teeth is determined by the tool engagement arc of the milling cutter, which is influenced by the radial cutting depth and tool diameter.

Different milling processes have different tool engagement arcs. In slot milling, the workpiece material surrounds half of the tool, and the tool engagement arc is 100% of the tool diameter. Half of the cutting teeth’s machining time is spent on cutting, leading to a rapid accumulation of heat. In face milling, a relatively smaller portion of the tool engages with the workpiece, allowing the cutting teeth to have more opportunities to dissipate heat into the air.

What are the 5 factors that influence the heat generation in cutting processes? 2

 

скорость резки

To maintain the thickness and temperature of the chips in the cutting zone equal to those during full slot cutting, tool suppliers establish compensation factors that increase the cutting speed when the tool engagement percentage decreases.

From a thermal load perspective, a smaller tool engagement arc may result in insufficient cutting time to generate the minimum temperature required for maximizing tool life. Increasing the cutting speed typically generates more heat, but combining a smaller tool engagement arc with a higher cutting speed helps elevate the cutting temperature to the desired level. Higher cutting speeds shorten the contact time between the cutting edge and the chips, thereby reducing the heat transferred to the tool. Overall, higher cutting speeds reduce machining time and increase productivity.

On the other hand, lower cutting speeds can lower the machining temperature. If excessive heat is generated during the process, reducing the cutting speed can bring the temperature down to an acceptable level.

cutting depth

The thickness of the chips has a significant impact on heat generation and tool life. When the chip thickness is too large, it creates excessive load that results in excessive heat and chip formation, and it may even lead to cutting edge fracture. Conversely, when the chip thickness is too small, the cutting process occurs only on a smaller portion of the cutting edge, and the increased friction and heat can cause rapid wear.

What are the 5 factors that influence the heat generation in cutting processes? 3 резка тепла

The thickness of chips generated in milling varies as the cutting edge enters and exits the workpiece. Therefore, tool suppliers utilize the concept of “average chip thickness” to calculate the tool feed rate aimed at maintaining the most efficient chip thickness.

Factors involved in determining the correct feed rate include the tool engagement arc or radial cutting depth and the primary relief angle of the cutting edge. A larger engagement arc requires a smaller feed rate to achieve the desired average chip thickness. Similarly, a smaller engagement arc necessitates a higher feed rate to achieve the same chip thickness. The primary relief angle of the cutting edge also affects the feed rate requirement. When the primary relief angle is 90°, the chip thickness is maximum. Thus, to achieve the same average chip thickness, reducing the primary relief angle requires an increase in the feed rate.

cutting edge groove

The geometric angles and cutting edges of milling cutters contribute to controlling the thermal load. The choice of tool rake angle is determined by the hardness of the workpiece material and its surface condition. Tools with a positive rake angle generate lower cutting forces and heat, allowing for higher cutting speeds. However, tools with a positive rake angle are weaker compared to tools with a negative rake angle, which can generate higher cutting forces and temperatures.

The groove geometry of the cutting edge can induce and control the cutting action and cutting forces, thus affecting heat generation. The cutting edge in contact with the workpiece can be chamfered, dulled, or sharp. Chamfered or dulled edges have higher strength and generate greater cutting forces and heat. Sharp edges can reduce cutting forces and lower machining temperatures.

The back angle of the cutting edge, known as the relief angle, is used to guide the chips. It can be positive or negative. Positive relief angles can simultaneously result in lower machining temperatures, while negative relief angles are designed for higher strength and generate more heat.

Milling is an intermittent cutting process, and the chip control features of milling tools are generally not as critical as in turning operations. Depending on the workpiece material and the engagement arc, the energy required to form and guide the chips may become crucial. Narrow or forced chip control groove geometry can curl up the chips immediately, generating higher cutting forces and more heat. Broader chip control groove geometry can produce lower cutting forces and lower machining temperatures, but may not be suitable for certain combinations of workpiece materials and cutting parameters.

охлаждение

One method of controlling the heat generated in metal cutting processes is through the application of coolant. Excessive temperature can cause rapid wear or deformation of the cutting edge, so it is essential to control the heat as quickly as possible. In order to effectively reduce the temperature, the heat source must be cooled.

Multiple interrelated factors collectively contribute to the load in metal cutting processes. These factors interact with each other during the machining process. This article explores the issue of heat generation in milling operations and its relationship with mechanical factors. Understanding the various factors involved in generating metal cutting loads and their overall impact will help manufacturers optimize their machining processes and maximize productivity and profitability.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

亚洲精品av一区二区日韩-日韩偷拍精品一区二区三区-亚洲欧美熟妇久久久久久-久草视频福利在线观看| 91九色精品人成在线观看-国产成人免费综合激情-新久久国产色av免费看-av网站国产主播在线| 日韩亚洲高清在线一区二区三区-国产无遮挡爆操美女老板-伊人久久亚洲精品国产av-国产亚洲综合成人在线| 91精品久久综合熟女-日产精品毛片av一区二区三区-国产精品永久在线播放-一区二区中文字幕在线视频| 日韩精品综合在线一区二区-极品人妻av一区二区三区-激情综合五月中文字幕-欧美免费在线观看黄片| 人妻日韩人妻中文字幕-日韩情色中文字幕在线-日韩av大全在线观看-日韩少妇高潮视频免费看| 麻豆视频传媒在线免费看-亚洲性码不卡视频在线-岛国av色片免费在线观看-久久久国产精品视频大全| 欧美精品日韩精品在线-久热传媒在线免费观看视频-亚洲一级天堂作爱av-久久精品国产精品亚洲蜜月| 开心五月激情综合久久爱-国产精品深夜在线观看-91亚洲国产成人精品一区.-精品亚洲国产成人性色av| 久99久热这里只有精品-日韩av一区二区三区播放-天堂日韩av在线播放-中文字幕被侵犯的人妻| 少妇被躁潮到高潮无人码-日本欧美一级二级三级不卡-国产一区视频二区视频-亚洲无人区码一二三区别| 亚洲av色福利天堂在线观看-人妻少妇午夜福利视频-男人的天堂av在线视频-国内揄拍国产精品人妻一区二区| 亚洲精品成人久久av中文字幕-中文av毛片在线观看-一本之道加勒比在线视频-日韩av一区二区在线观看不卡| 未满十八禁止免费观看网站-国产夫妻福利在线观看-亚洲国产黄色精品在线-日韩亚洲一卡二卡三卡| 日韩亚洲分类视频在线-熟妇人妻久久中文字幕电-久久麻传媒亚洲av国产-精品丰满熟妇高潮一区| 亚洲老妈激情一区二区三区-夜晚福利视频亚洲精品自拍视频-亚洲av永久精品一区二区在线-中文国产人精品久久蜜桃| 国产精品欧美日韩视频二区-少妇人妻系列中文在线-精品人妻一区二区三区四区不卡-少妇被无套内谢免费视频| 欧美黄色在线观看免费-日本高清精品一卡二卡-日本综合精品一区二区在线-国产精品伦人一久二久三久| 女同在线播放中文字幕-国产成人亚洲精品在线看-日韩有码在线观看视频-蜜桃av噜噜一区二区三区视频| 正在播粉嫩丰满国产极品-国产成人午夜福利av在线-国产精品自拍自在线播放-一区二区三区四区日本视频| 能看免费欧美一级黄片-男女视频网站免费精品播放-日本高清在线一区二区三区-熟女少妇免费视频网站观看| 3p人妻一区二区三区-亚洲精品国产高清自拍-女同国产日韩精品在线-亚洲午夜国产激情福利网站| 少妇无套内谢免费视频-色婷婷性感在线观看视频-国产免费黄色一级大片-国产亚洲精品麻豆一区二区| 日韩有色视频在线观看-久久亚洲精品一区二区三区-风韵犹存久久一区二区三区-日本最黄网站在线观看| 亚洲欧洲偷拍自拍av-日韩午夜福利剧场久久-午夜福利成人在线视频-91午夜福利在线观看精品| 天天色天天干天天操天天射-日本午夜一区二区福利激情-国产精品一区中文字幕在线-欧美性生活网站视频观看| 欧洲熟女乱色一区二区三区-人妻中文字幕一区二区在线视频-亚洲码欧洲码一区二区三区四区-日本片在线美女视频骚货| av天堂一区二区三区在线观看-一区二区三区在线观看蜜桃-激情在线免费观看国产视频-国产精品国产三级国产三不| 国产白浆一区二区在线观看-青草衣衣精品国色天香亚洲av-欧美午夜福利性色视频-成人亚洲一区二区三区在线观看| 极品美女色诱视频在线-欧美久久天天综合香蕉伊-久久精品人人澡夜夜澡-亚洲一区二区三区四区伦理| 亚洲欧美日韩另类第一页-亚洲欧美日本综合久久-亚洲一本之道高清在线观看-不卡在线一区二区三区视频| 少妇高潮叫床免费网站在线观看-亚洲av狠狠的爱一区二区-激情综合成年免费视频-中文字幕人妻系列在线| 中文字幕国产剧情av-久久精品日韩欧美精品-玖玖热视频这里只有精品-国产黄色三级视频网站| 国产女主播在线播放福利-日韩中文字幕综合第二页-av男人的天堂免费观看-国产乱码免费一区二区三区不卡| 国内国产精品国产三级-美女性爽潮喷白丝小仙女-国产精品自拍露脸在线-国产精品亚洲综合日韩| 人妻精品一区二区视频免费-99热视频免费在线观看-亚洲av第一第二第三-乱码人妻精品一区二区三区| 3p人妻一区二区三区-亚洲精品国产高清自拍-女同国产日韩精品在线-亚洲午夜国产激情福利网站| 97视频在线观看精品在线-久久精品欧美日韩一区麻豆-亚洲精品在线少妇内射-国产在线一区二区三区三州| 亚洲熟妇av熟妇在线-国产精品午夜福利清纯露脸-粉嫩av在线播放一绯色-日产精品久久久久久蜜臀| 国产熟女露脸91麻豆-自拍视频在线观看后入-麻豆映画视频在线观看-国产视频男女在线观看| 大奶人妻丝袜中出在线-亚洲一区久久中文字幕-国产成人av剧情自拍网站-嫩草伊人久久精品少妇av|