色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

There are mainly two types of 3D printing technologies currently applied in tool manufacturing. One is the Laser Powder Bed Fusion (LPBF) technology, used to manufacture metal tools with special grooves or complex internal cooling channels; the other is the Binder Jetting (BJ) technology.Metal 3D printing technology has gained a foothold in manufacturing complex external structures and internal cooling structures of tools. Renowned tool manufacturers around the world have applied metal additive manufacturing processes to the production of certain types of tools, thereby enhancing tool performance or achieving special tools that traditional manufacturing processes cannot achieve.
Subdivision of Carbide Cutting Tools
Subdivision of Carbide Cutting Tools

Binder Jetting 3D printing technology has enabled the creation of even more complex structures, including carbide?tools with internal cooling channels.Binder Jetting Metal 3D Printing Technology

What is Binder Jetting?

Binder Jetting 3D printing technology combines material jetting and sintering processes to produce fully dense metal components. The lower cost of equipment also means significantly reduced part costs, and low-cost, high-volume parts are crucial for transitioning to production. Binder Jetting metal 3D printing technology has the potential to replace low-volume, high-cost metal injection molding and can also be used to produce complex and lightweight metal parts in other fields, such as gears or turbine impellers, greatly reducing 3D printing costs and shortening delivery times.

Valve Cage Printed by Binder Jetting Metal 3D Printing
Valve Cage Printed by Binder Jetting Metal 3D Printing

In Binder Jetting 3D printing process, ceramic hard material powder particles, including tungsten carbide particles, are bound together layer by layer using a bonding material containing cobalt, nickel, or iron. This bonding material not only serves as the binder between powder layers but also imparts excellent mechanical properties to the product and enables the production of fully dense parts. It can even selectively adjust the bending strength, toughness, and hardness. These 3D printed carbide?molds have greater geometric freedom than molds produced by traditional methods, allowing for the creation of more complex geometries.

Flow Control Stack Printed by Binder Jetting Metal 3D Printing
Flow Control Stack Printed by Binder Jetting Metal 3D Printing

Advantages of 3D Printing Compared to Traditional Machining Processes

Traditional machining processes typically involve compressing tungsten carbide powder uniformly in a flexible bag to manufacture large-sized carbide?components or carbide components with high aspect ratios (such as end mills and drill bit shanks). Although the production cycle of the compaction method is longer than that of molding methods, the manufacturing cost of the tool is lower, making this method more suitable for small-batch production.

carbide?components can also be formed by extrusion or injection molding. Extrusion processes are more suitable for the large-scale production of axially symmetric shaped components, while injection molding processes are typically used for the large-scale production of complex-shaped components. In both molding methods, the grade of tungsten carbide powder is suspended in organic binders, giving the tungsten carbide mixture a paste-like uniformity. The mixture is then extruded through holes or molded into cavities. The characteristics of the tungsten carbide powder grade determine the optimal ratio of powder to binder in the mixture and have a significant impact on the flow of the mixture through the extrusion or into the mold cavity.

After molding, compaction, extrusion, or injection molding of the components, it is necessary to remove the organic binder from the components before the final sintering stage. Sintering removes pores from the components, making them fully (or substantially) dense. During sintering, the metal bonds in the compacted shaped components become liquid, but the components can still maintain their shape due to the combined action of capillary forces and particle contacts.

After sintering, the geometric shape of the components remains unchanged, but the dimensions shrink. To obtain the desired component dimensions after sintering, shrinkage must be considered when designing the tool. When designing the tungsten carbide powder grades used to manufacture each tool, it must be ensured that the correct shrinkage rate is achieved when compressed under appropriate pressure.

Internal Cooling Boring Tool Holder Mechanism for Powder Bed Metal 3D Printing
Internal Cooling Boring Tool Holder Mechanism for Powder Bed Metal 3D Printing

Furthermore, combining differentiated metal powders with binder jetting and laser powder bed 3D printing technologies, along with manufacturing expertise in post-printing processes, can expedite the production of finished components and molds, thereby reducing downtime and enhancing performance.

Carbide Tools Printed by Binder Jetting Metal 3D Printing
Carbide Tools Printed by Binder Jetting Metal 3D Printing

Meetyou carbide??is also committed to flexible customized design and manufacturing of special metal and alloy components such as high-temperature alloys and refractory metals. Meanwhile, it is upgrading to become an outstanding 3D printing solution provider for high-density, large-sized, and scalable production of tungsten components.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

四虎国产在线播放精品免费99-一区二区三区中文字幕日本-91国偷自产中文字幕久久-青青草一级视频在线观看| 黑人精品视频一区二区三区-在线播放免费av大片-在线免费观看日韩精品-日本av在线观看一区二区三区| 男女啪啪动态视频免费-日韩精品一区二区高清-日韩在线有码中文字幕-日本免费高清一区二区三区视频| 激情视频在线观看国产一区-日韩高清在线视频一区免费观看-国产白丝精品在线观看-色偷偷伊人大杳蕉综合网| 亚洲一级特黄大片做受-国产91喷潮在线观看-日本不卡一区二区三区四区-在线观看高清视频一区二区三区| 国产亚洲精品视频自拍-激情五月开心五月婷婷-日本少妇三级交换做爰做-国产日韩三级中文字幕| 日韩精品人妻视频一区二区三区-国产经典一区二区三区四区-亚洲中文视频免费在线观看-美女自拍大秀福利视频| 拉风色国产精品一区二区三区-av一级不卡手机在线观看-亚洲欧美日韩国产色另类-青青草伊人视频在线观看| 亚洲日本精品国产第一区二区-国产一级二级三级大胆视频-片黄片色日韩在线观看免费-五月综合婷婷中文字幕| 人妻少妇中文字幕久久精品-水蜜桃av一区二区三区在线观看-日韩熟女精品一区二区三区-久久国产综合激情对白| 91人人妻人人澡人人爽超污-精久国产av一区二区三区-日韩av在线一区二区三区-免费视频又爽内射男女| 免费人成视频在线播放-成人级a爱看片免费观看-激情偷乱在线视频播放网-激情综合网激情综合网激情| 久久噜噜噜精品国产亚洲综合-91精品国产高清久久福利-精品国产一区二区三区麻豆-日本加勒比一区二区在线观看免费| 蜜桃国产精品一区二区三区-午夜理论片在线观看有码-91亚洲视频在线免费观看-自拍偷拍区一区二区三区精品区| 日本一区二区免费电影院-亚洲精品成人av观看-国产级一片内射视步页-日韩高清在线亚洲专区视频| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列| 久久精品国产亚洲av麻豆看片-内射后入高潮在线视频-亚洲精品一区三区三区在线-亚洲乱码一区二区三区视色| 国产精品大片中文字幕-国产丝袜av一区二区免费-亚洲av巨作一级精品-国产成人综合亚洲欧美天堂| 亚洲精品av一区二区日韩-日韩偷拍精品一区二区三区-亚洲欧美熟妇久久久久久-久草视频福利在线观看| 国产一区二区精品在线播放-亚洲欧美精品伊人久久-亚洲精品日韩在线播放-国产精品色av一区二区三区| 国产精品久久久久久野战-人妻少妇中文字幕在线一区-国产自拍日韩在线视频-少妇宅女午夜福利院免费| 一本久道视频无线视频试看-亚洲国产精品一区二区三区久久-中文字幕色偷偷人妻久久-久久精品99国产精品中| 国精品视频在线播放不卡-日韩av免费观看在线-亚洲这里只有精品在线观看-免费的精品一区二区三区| 国产素人一区二区久久-欧美精品不卡在线观看-蜜桃精品一区二区在线播放蜜臀-欧美日韩精品在线一区二区三区| 深夜福利导航在线观看-情色视频在线观看一区二区三区-丝袜美腿诱惑福利视频-国产最新福利一区二区三区蜜桃| 国产最新av一区二区-国产精品自产av一区二区三区-国产精品国产三级国产有无不卡-成人偷拍自拍在线观看| 日本一区二区三区高清视频-九九九热在线观看视频-亚洲综合自拍偷拍人妻丝袜-亚洲精品国产二区三区在线| 亚洲一区二区三区日本久久-精品国产成人一区二区不卡在线-91精品国产色综合久久成人-一区二区三区成人在线观看| av网站在线观看华人免费-美女露下体让人舔视频网站-六月丁香激情综合爱爱-宅福利有番号亚洲麻豆91| 精品人妻在线一区二区三区-国内av在线免费观看-亚洲av影片一区二区三区-久久精品女同亚洲女同13| 黄色永久免费中文字幕-蜜臀av一区二区三区人妻在线-国产精品久久午夜伦鲁鲁-国产欧美日韩亚洲更新| av毛片天堂在线观看-亚洲av成人午夜亚洲美女在线-九九久久精品国产免费av-亚洲av永久精品免费| 成年女黄网站色免费视频-福利在线一区二区三区-黑人狂躁日本妞一区二区三区-国产亚洲精品福利视频| 视频一区二区不中文字幕-亚洲av色香蕉一区二区三区妖精-国产91精品在线观看懂色-国产一区二区三区不卡在线看| 日本一区二区三区四区高清-91久久香蕉国产熟女-久久精品99国产日本精品-国产粉嫩一区二区三区在线观看| 2023年久久国产精品-亚洲中文字幕二区在线观看-人人妻人人玩人人澡人九色-午夜精品福利视频网站| 国内国产精品国产三级-美女性爽潮喷白丝小仙女-国产精品自拍露脸在线-国产精品亚洲综合日韩| 18禁无遮挡美女国产-久久精品国产精品亚洲毛片-国内精品极品在线视频看看-日本二区 欧美 亚洲 国产| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 草草草草伦理少妇高清-国内精品视频网站草草-国产精品精国产在线观看-国产麻豆激情av在线| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频|