色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Редкоземельный твердый сплав и его свойства 1
I. Обзор
Цементированный карбид также известен как ?зубья? промышленности. С момента своего создания в качестве эффективного инструментального материала и конструкционного материала область его применения постоянно расширялась, что сыграло важную роль в содействии промышленному развитию и научно-техническому прогрессу. В последние 20 лет вольфрам-кобальт-основа
Твердосплавные сплавы d широко используются в металлорежущих, металлообрабатывающих инструментах, горном бурении и быстроизнашивающихся деталях из-за их высокой твердости, вязкости и отличной износостойкости по сравнению с другими твердыми сплавами. ,
Цементированный карбид обладает рядом превосходных эксплуатационных характеристик: он обладает высокой твердостью и износостойкостью, что особенно ценно, он обладает хорошей красной твердостью, превышает твердость при нормальной температуре высокоскоростной стали при 600 ° C и превышает углеродистую сталь при 1000 ° C. Нормальная температура твердости; имеет хороший модуль упругости, обычно (4 ~ 7) × 104 кг / мм2, хорошую жесткость при нормальной температуре; высокая прочность на сжатие, до 600 кг / мм2; хорошая химическая стабильность, некоторые сорта цементированного карбида устойчивы к кислотной и щелочной коррозии и не подвергаются значительному окислению даже при высоких температурах; низкий коэффициент теплового расширения. Теплопроводность и проводимость близки к таковым у железа и железных сплавов.
По среднему размеру зерна WC в цементированном карбиде, цементированный карбид можно разделить на: нанокристаллический цементированный карбид, ультрамелкозернистый цементированный карбид, субмикронный гранулированный карбид, мелкозернистый цементированный карбид, среднезернистый цементированный карбид, крупнозернистый цементированный карбид, крупнозернистый зернистый цементированный карбид.
Субмикронные и ультрамелкозернистые карбиды имеют высокую твердость и износостойкость и широко используются в режущих инструментах, пильных лезвиях, фрезах, штамповках, компонентах штока клапана, насадках для пескоструйного оборудования и т. Д.
Ультра-толстый зернистый карбид обладает лучшей прочностью и устойчивостью к термической усталости, и его применение в инструментах для горнодобывающей промышленности и выемки грунта быстро развивается. Градиентные сплавы и карбидно-алмазные композиты могут использоваться для выделения определенных специфических свойств в соответствии с различными требованиями применения, поэтому применение инструментов и инструментов для горного дела быстро развивается.
Свойства цементированных карбидов на основе вольфрама-кобальта в основном зависят от содержания Co и размера зерна WC. Типичный кобальт-кобальтовый цементированный карбид имеет содержание кобальта от 3 до 30 мас. Т1 ТП1Т, а размер зерна WC варьируется от субмикронного до нескольких. Micron. Развитие технологии синтеза наноразмерных частиц, особенно наноразмерных частиц WC и Co, значительно улучшило механические свойства цементированного карбида nano-WC-Co.
Когда зерно WC меньше размера субмикрона, прочность, твердость, ударная вязкость и износостойкость сплава значительно улучшаются, и сплав, имеющий высокую плотность, может быть получен при понижении температуры спекания. Следовательно, в области цементированного карбида преобразование традиционных типов в ультратонкие и наномасштабы стало тенденцией его развития.
Однако рост зерна WC всегда был узким местом в разработке и производстве ультрадисперсных сплавов WC-Co. Добавление определенных добавок к цементированному карбиду является одним из эффективных способов улучшения свойств сплава. Существует два основных типа добавок, добавляемых к цементированному карбиду: один представляет собой карбид тугоплавкого металла, а другой - добавку металла. Роль добавки заключается в снижении чувствительности сплава к колебаниям температуры спекания и чувствительности к изменениям содержания углерода, предотвращении неравномерного роста карбидных зерен, изменении фазового состава сплава, улучшая тем самым структуру и свойства сплав.
Наиболее часто используемые карбидные добавки включают карбид хрома (Cr3C2), карбид ванадия (VC), карбид молибдена (Mo2C или MoC), карбид кобальта, карбид тантала и тому подобное. Выбор ингибитора зависит от общего ингибирующего эффекта, и ингибирующие эффекты следующие: VC> Cr3C2> NbC> TaC> TiC> Zr / HfC. Обычно используемыми металлическими добавками являются хром, молибден, вольфрам, рений, рутений, медь, алюминий и редкоземельные элементы. Добавление редкоземельных элементов в цементированный карбид не только препятствует росту зерен WC во время спекания, но также улучшает механические свойства и износостойкость сплава, тем самым дополнительно улучшая срок службы изделий. В области цементированных карбидов исследования по редкоземельным присадкам были горячей темой, но общая идея заключается в добавлении не наноразмерных редкоземельных присадок для модификации твердых сплавов, но добавление нано-редкоземельных добавок редко сообщили.
Использование нано-редкоземельной добавки ниже, чем использование обычной редкоземельной добавки, а зазор с зерном WC (большой круг) мал, а расположение более плотное. Размер обычной редкоземельной добавки почти такой же, как у WC, поэтому легко создать источник трещин. Поэтому в этом эксперименте в качестве добавки используются нано-редкоземельные элементы, чтобы не снижать стоимость и не повышать производительность. Китай богат редкоземельными ресурсами. Если мы будем использовать такое мышление для разработки новых технологий, в полной мере использовать китайские ресурсы вольфрамовой руды и редкоземельных элементов, исследовать и разрабатывать твердосплавные материалы, модифицированные редкоземельными элементами, повышать уровень производства и развивать китайскую промышленность по производству цементированного карбида. Высокое качество продукции глубокой переработки с высокой добавленной стоимостью, повышение конкурентоспособности, изменение неблагоприятной ситуации на международном рынке и достижение благотворного цикла сырья имеют большое значение.
2. Редкоземельный твердый сплав
Редкоземельный элемент — это 15 лантаноидов третьей подгруппы периодической таблицы Менделеева с атомными номерами от 57 до 71, а также в общей сложности 17 элементов, сходных по электронному строению и химическим свойствам. Редкоземельные элементы известны как ?сокровищница? новых материалов и представляют собой группу элементов, которые больше всего беспокоят отечественных и зарубежных ученых, особенно специалистов по материалам. Благодаря своим особым свойствам редкоземельные элементы нашли широкое применение в металлургии, оптике, магнетизме, электронике, машиностроении, химии, атомной энергетике, сельском хозяйстве и легкой промышленности. Хотя редкоземельные элементы используются в качестве добавок и модификаторов, их прямая выходная ценность и прибыль невелики, зато вторичный экономический эффект может быть увеличен в десятки и даже сотни раз. Редкоземельные ресурсы Китая богаты, его запасы занимают первое место в мире, а его комплексные производственные мощности занимают второе место в мире. В стране и за рубежом редкоземельные элементы и их соединения находят практически повсеместное применение в народном хозяйстве. Редкоземельные элементы обладают очевидным улучшением характеристик цементированного карбида. Большое количество исследований показало, что добавление редкоземельных элементов может в значительной степени улучшить прочность и ударную вязкость цементированного карбида, так что цементированный карбид с добавлением редкоземельных элементов может широко использоваться в инструментальных материалах и горнодобывающих инструментах. , пресс-формы, перфораторы и т. д. имеют отличные перспективы развития. Редкоземельными элементами, обычно используемыми в качестве добавок, являются Ce, Y, Pr, La, Sc, Dy, Gd, Nd, Sm и т.п. Форма присоединения обычно представляет собой оксид, чистый металл, нитрид, гидрид, карбид, промежуточный сплав редкоземельных элементов и кобальта, карбонат, нитрат и т.п. Тип и морфология добавленных редкоземельных элементов влияют на физические и механические свойства цементированного карбида.
3. Механизм упрочнения и упрочнения редкоземельных элементов.
Добавление следов редкоземельных элементов в цементированный карбид не только препятствует росту зерен сплава во время процесса спекания, но также улучшает механические свойства сплава, тем самым дополнительно улучшая срок службы изделия. Механизм усиления редкоземельного элемента на цементированном карбиде заключается в следующем:
(1) Чжан Фенлин и соавт. полагают, что при охлаждении γ-фазы от высокой температуры до комнатной температуры fcc → hcp является фазовым переходом диффузионного типа (с помощью механизма Ms). Среди них фазы γfcc и γhcp составляют около 10%. Поскольку добавление редкоземельного элемента может ингибировать мартенситное превращение, содержание γhcp в связующей фазе может быть уменьшено. Механизм его ингибирования мартенситного превращения может быть обусловлен двумя причинами: одной является дислокация пиннинга оксида редкоземельного элемента, которая препятствует движению дислокации; с другой стороны, оксид редкоземельного элемента закрепляется в месте дефекта, образуя потенциальное ядро ε-зародыша. Зародыш уменьшается. Таким образом, хрупкая ε-фаза уменьшается, и ударная вязкость α-фазы увеличивается.
Wang Ruikun и другие считают, что добавление следовых редкоземельных элементов в цементированные карбиды может ингибировать расширение дефектов упаковки в фазе Co-связующего, тем самым ингибируя превращение ГЦК-α-Co → ГПУ-ε-Co (слоистое зародышеобразование), делая ГЦК-α -Ко в сплаве. Объемная доля увеличивается. α-Co имеет 12 систем скольжения, в то время как ε-Co имеет только 3 системы скольжения. Редкоземельный цементированный карбид в основном состоит из ГЦК-α-Co, который улучшит его способность координировать напряжение и ослаблять стресс, тем самым улучшая его ударную вязкость.
(2) Влияние на растворимость твердого вещества W.
Разделение редкоземельных элементов на границе раздела фаз WC / Co влияет на десольватацию таких элементов, как W и Ti из Со. Можно увеличить содержание W и Ti в связующей фазе, тем самым функционируя как упрочняющий твердый раствор. Но механизм не полностью признан.
(3) Уточните организацию.
Редкоземельный элемент в цементированном карбиде распределяется на границе раздела WC / Co и WC / WC. Адсорбция редкоземельных элементов на границе раздела, безусловно, уменьшит межфазную энергию границы раздела твердое тело-жидкость. Это может подавить процесс укрупнения зерен WC во время спекания.
(4) Укрепление и ужесточение границ зерен и фазовых границ.
При разрушении цементированного карбида он происходит главным образом вдоль фазы разрушения связи Co, и вдоль зерна WC имеются некоторые трещины. Следовательно, его поведение при разрушении имеет важное отношение к поведению интерфейса WC / Co. Присутствие редкоземельных элементов в цементированных карбидах происходит главным образом из-за оксидов или интерметаллидов. Распределение в основном на стыке WC / Co и WC / WC. Небольшое количество редкоземельных оксидов также может быть найдено в связующей фазе. Его форма в основном сферическая или многогранная. Ввиду роли редкоземельных элементов в очистке границ зерен и фаз и улучшении прочности межфазной границы вязкость разрушения редкоземельных цементированных карбидов будет значительно улучшена.
Из-за различий в способах, формах, типах редкоземельных элементов и методах исследований выводы исследований различны, и предлагаемый механизм будет другим и даже противоречивым. Исследования по цементированным карбидам, упрочненным редкоземельными элементами, требуют дальнейшего изучения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

日韩av免费在线网站-在线一区二区三区视频免费观看-日韩一本不卡一区二区三区-国产成人国产在线播放| 国产极品高颜值露脸女主播-国产日韩亚洲欧美综合-成人亚洲天堂av在线-日韩在线观看免费不卡| 日本在线无乱码中文字幕-国产美女自拍视频精品一区-精品人妻中文字幕一区二区三区-精品国产一级二级三级| 女人高潮久久久久久久久-久久久国产熟女一区二区三区-91在线精品国产丝袜-国产精品日韩亚洲一区二区| 正在播放会所女技师口爆-久热久热精品在线视频-久久久精品蜜桃久久九-亚洲精品无吗无卡在线播放| 久久777国产线看观看精品-日韩精品一区二区三区四区-美女射精视频在线观看-久草福利资源免费在线观看| 亚洲熟妇激情视频99-丝袜美腿诱惑av网站在线观看-欧美国产综合激情一区精品-激情综合网激情五月我去也| 18 禁国产一区二区三区无遮掩-男女国产猛烈无遮挡视频-国产精品一区二区三区在线蜜桃-色悠悠国产精品免费观看| 中文字幕亚洲综合精品一区-久久好视频久久这里有精品-国产在线传媒高清视频-日韩精品一区二区亚洲av失禁| 一本久道热线在线视频-精品人妻在线中文字幕-亚洲av成人av天堂色多多-国产牛奶粉哪个品牌好| 欧美亚洲午夜综合一区二区-亚洲大香蕉视频在线观看-国产综合激情人妻91麻豆-国产精品国产三级国产专不| 午夜性福福利视频一区二区三区-午夜福利在线看片在线-欧洲内射免费人文艺术-亚洲天堂成人av在线| 国产福利一区二区写真-久久国产电影在线观看-亚洲国产一区二区三区亚瑟-中文字幕乱码亚洲无线码二区| 亚洲av日韩av天堂影片精品-熟妇人妻丰满少妇中文-国产精品日本一区二区三区-国产精品熟女乱色一区二区| 国产三级一区二区三区视频在线-日韩av在线视频网站-99久国产精品午夜性色福利-精品国产女同一区二区三区| 亚洲av成人精品爽爽-国产麻豆91在线播放-国产精品久久精品久久精品-蜜臀久久综合一本av| 国产精品久久中文字幕网-国产亚洲av无色肉丝网站-自拍偷拍亚洲精品偷一-日本久久一区二区三区| 欧美av黄片在线观看-黄片国产一级片在线观看-国产精品黄色精品黄色大片-一区二区三区国产日本欧美| 女人高潮久久久久久久久-久久久国产熟女一区二区三区-91在线精品国产丝袜-国产精品日韩亚洲一区二区| 日本黄网站三级三级三级-91网址免费在线观看-肥老熟女性强欲五十路-无套内谢少妇高朝毛片| 密臀av免费在线观看-日韩欧美中文字幕美利坚-av黄色在线观看一区二区三区-日韩性做爰片免费视频看| 日韩成人动漫视频在线-人妻日韩精品中文字幕-国产老妇伦国产熟女老妇久-久久精品人妻一区二区三区| 黄色av日韩在线观看-偷拍自拍在线免费视频-色偷偷偷亚洲综合网另类-国产成人免费综合视频| 国产精品欧美日韩视频二区-少妇人妻系列中文在线-精品人妻一区二区三区四区不卡-少妇被无套内谢免费视频| 日韩精品中文字幕第二页-日本午夜剧场在线观看-毛片在线观看免费日韩-日韩午夜理论中文字幕毛片| 欧美精品日韩精品在线-久热传媒在线免费观看视频-亚洲一级天堂作爱av-久久精品国产精品亚洲蜜月| 久色视频精品在线观看-在线看片免费人成视久网国产-亚洲精品人妻中文字幕-国产一区二区午夜福利在线观看| 国产黑色丝袜在线观看网站-成人a免费大片在线看-熟妇人妻精品一区二区三区视频-日韩av高清不卡一区二区三区| 亚洲五月六月丁香缴情久久-国产精品国产三级国产一区-人妻中文字幕一区二区三区四区-精品在线视频尤物女神| 亚州国产精品一区二区-尤物在线观看视频免费-国产91久久精品视频-一色桃子中出欲求不满人妻| 欧美日韩国产激情综合-九九精品国产亚洲av日韩-国产午夜激情免费视频-日本厕所偷拍尿尿视频| 国产 av 一区二区三区-日韩黄色三级三级三级-久久精品视频这里只有精品-日韩精品中文字幕亚洲| 日本午夜av免费久久观看-国产精品夜色一区二区三区不卡-亚洲高清自有码中文字-青青草国产成人在线观看| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 邻居少妇毛多水多太爽了-男人天堂手机在线视频-国产精品国产三级国产专播-韩国女主播福利视频一区二区| 国产人妖直男在线视频-午夜福利视频合集91-亚洲五月自拍欧美第一页-国产主播免费在线一区二区| 起碰在线视频免费播放-人妻在线视频一区二区三区-日韩伦理在线一区二区三区-久久女厕视频偷拍一区二区| 久久97久久97精品免视看秋霞-黄片av毛片在线免费观看-日韩av高清不卡免费观看-成人午夜福利视频观看地址| 九九热在线免费视频播放-久久综合九色综合久久久-国产粉嫩小仙女裸体区一区二-中文字幕巨乳人妻在线| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频| 久久精品中文字幕一区二区-日本夫妻性生活视频播放-综合久久精品亚洲天堂-日韩中文字幕不卡久久|