色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Просвечивающая электронная микроскопия высокого разрешения (HRTEM или HREM) является фазово-контрастной (контраст изображений электронной микроскопии высокого разрешения формируется за счет разности фаз между синтезированной проецируемой волной и дифрагированной волной, она называется фазово-контрастной). дает атомное расположение большинства кристаллических материалов.
Просвечивающая электронная микроскопия высокого разрешения появилась в 1950-х годах. В 1956 году JWMenter непосредственно наблюдал параллельные полоски 12 ? фталоцианина меди с разрешением 8 ? в просвечивающем электронном микроскопе и открыл электронную микроскопию высокого разрешения. Дверь в хирургию. В начале 1970-х, в 1971 году, Иидзима Ченгман использовал ПЭМ с разрешением 3,5 ? для захвата фазово-контрастного изображения Ti2Nb10O29 и непосредственно наблюдал проекцию атомной группы вдоль падающего электронного пучка. В то же время исследования в области теории и технологии анализа изображений с высоким разрешением также достигли значительного прогресса. В 1970-х и 1980-х технология электронных микроскопов постоянно совершенствовалась, и разрешение значительно улучшалось. Как правило, большой ПЭМ может гарантировать разрешение кристалла 1,44 ? и разрешение точки от 2 до 3 ?. HRTEM может не только наблюдать изображение полос решетки, отражающее межплоскостное расстояние, но также наблюдать структурное изображение расположения атомов или групп в реакционной кристаллической структуре. Недавно группа профессора Дэвида А. Мюллера из Корнельского университета в США использовала технологию ламинированных изображений и независимо разработанный электронный микроскоп с матрицей пикселей для достижения пространственного разрешения 0,39 ? в условиях визуализации с низкой энергией электронного пучка.
В настоящее время просвечивающие электронные микроскопы, как правило, способны выполнять HRTEM. Эти просвечивающие электронные микроскопы подразделяются на два типа: высокого разрешения и аналитические. ПЭМ высокого разрешения оснащен полюсным наконечником объектива высокого разрешения и комбинацией диафрагмы, что делает угол наклона стола для образцов небольшим, что приводит к меньшему коэффициенту сферической аберрации объектива; в то время как аналитическая ТЭМ требует большего количества для различных анализов. Угол наклона предметного столика, поэтому полюсный башмак объектива используется иначе, чем тип с высоким разрешением, что влияет на разрешение. Как правило, ПЭМ высокого разрешения на 200 кэВ имеет разрешение 1,9 ?, а аналитическая ПЭМ на 200 кэВ имеет разрешение 2,3 ?. Но это не влияет на аналитическую ПЭМ-съемку изображения высокого разрешения.

Наука об электронных микрофотографиях высокого разрешения 1

Как показано на рис. 1, оптическая диаграмма пути процесса визуализации электронной микроскопии высокого разрешения, когда электронный пучок с определенной длиной волны (λ) падает на кристалл с расстоянием между плоскостями кристалла d, условие Брэгга (2dsin θ = λ), дифрагированная волна генерируется под углом (2θ). Эта дифрагированная волна сходится на задней фокальной плоскости объектива, образуя дифракционное пятно (в электронном микроскопе на люминофорный экран проецируется правильное дифракционное пятно, сформированное на задней фокальной плоскости, которое представляет собой так называемую картину дифракции электронов). ). Когда дифрагированная волна на задней фокальной плоскости продолжает двигаться вперед, дифрагированная волна синтезируется, на плоскости изображения формируется увеличенное изображение (электронно-микроскопическое изображение), а на задней фокальной плоскости могут быть вставлены два или более больших упора объектива. самолет. Волновая интерференционная визуализация, называемая электронной микроскопией высокого разрешения, называется электронно-микроскопическим изображением высокого разрешения (микроскопическим изображением высокого разрешения).
Как уже упоминалось выше, электронно-микроскопическое изображение высокого разрешения представляет собой фазово-контрастное микроскопическое изображение, сформированное путем прохождения прошедшего луча фокальной плоскости объектива и нескольких дифрагированных лучей через зрачок объектива благодаря их фазовой когерентности. Из-за разницы в количестве дифрагированных лучей, участвующих в построении изображения, получаются изображения высокого разрешения с разными названиями. Из-за различных условий дифракции и толщины образца электронные микрофотографии высокого разрешения с различной структурной информацией можно разделить на пять категорий: полосы решетки, одномерные структурные изображения, двумерные изображения решетки (изображения одной ячейки), двумерные изображения. изображение структуры (изображение в атомном масштабе: изображение кристаллической структуры), специальное изображение.
Решетчатые полосы: если линзой объектива выбран проходящий луч в задней фокальной плоскости, а дифракционные лучи интерферируют друг с другом, получается одномерный рисунок полос с периодическим изменением интенсивности (как показано черным треугольником на рис. Рис. 2 (е)) В этом заключается различие между полосой решетки и изображением решетки и структурным изображением, которое не требует, чтобы электронный пучок был точно параллелен плоскости решетки. На самом деле, при наблюдении кристаллитов, выделений и т.п. полосы решетки часто получают интерференцией между проекционной и дифракционной волнами. Если сфотографировать электронограмму вещества, такого как кристаллиты, появится кольцо поклонения, как показано на (а) рис. 2.

Наука об электронных микрофотографиях высокого разрешения 2

Изображение одномерной структуры: если образец имеет определенный наклон, так что электронный пучок падает параллельно определенной кристаллической плоскости кристалла, он может удовлетворять одномерной дифракционной картине дифракции, показанной на рис. 2 (b) ( симметричное распределение относительно пятна пропускания) Дифрактограмма). На этой дифракционной картине изображение с высоким разрешением, полученное в условиях оптимальной фокусировки, отличается от полосы решетки, а изображение одномерной структуры содержит информацию о кристаллической структуре, то есть полученное изображение одномерной структуры, как показано на рис. 3 (a показано одномерное структурное изображение с высоким разрешением сверхпроводящего оксида на основе Bi.
Двумерное изображение решетки: если электронный пучок падает параллельно определенной оси кристалла, можно получить двумерную дифракционную картину (двумерное симметричное распределение относительно центрального пятна пропускания, показанное на рис. 2 (c). ). Для такой электронограммы. Вблизи пятна пропускания возникает дифракционная волна, отражающая элементарную ячейку кристалла. В двумерном изображении, созданном интерференцией между дифрагированной волной и прошедшей волной, можно наблюдать двумерное решетчатое изображение, показывающее элементарную ячейку, и это изображение содержит информацию о масштабе элементарной ячейки. Однако информация, которая не содержит атомного масштаба (в атомном расположении), то есть двумерное изображение решетки, является двумерным изображением решетки монокристаллического кремния, как показано на рис. 3(d).
Двумерное изображение структуры: получена дифракционная картина, показанная на рис. 2(d). Когда электронно-микроскопическое изображение с высоким разрешением наблюдается с такой дифракционной картиной, чем больше дифракционных волн участвует в построении изображения, тем больше информации, содержащейся в изображении с высоким разрешением. Двумерное изображение структуры сверхпроводящего оксида Tl2Ba2CuO6 с высоким разрешением показано на рис. 3(e). Однако дифракция высоковолновой стороны с более высоким пределом разрешения электронного микроскопа вряд ли будет участвовать в отображении правильной структурной информации и становится фоном. Следовательно, в пределах допустимого разрешением. Создавая изображение с максимально возможным количеством дифрагированных волн, можно получить изображение, содержащее правильную информацию о расположении атомов в элементарной ячейке. Изображение структуры можно наблюдать только в тонкой области, возбуждаемой пропорциональной зависимостью между участвующей в изображении волной и толщиной образца.

Наука об электронных микрофотографиях высокого разрешения 3

Специальное изображение: На дифракционной картине задней фокальной плоскости вставка апертуры выбирает только конкретное изображение волны, чтобы иметь возможность наблюдать изображение контраста конкретной структурной информации. Типичным примером этого является упорядоченная структура наподобие. Соответствующая электронограмма показана на рис. 2(д) как электронограмма упорядоченного сплава Au, Cd. Упорядоченная структура основана на гранецентрированной кубической структуре, в которой атомы Cd расположены по порядку. На рис. 2(e) электронограммы слабые, за исключением основных решеточных отражений индексов (020) и (008). Упорядоченное отражение решетки, с использованием объектива для извлечения основного отражения решетки, с использованием волн передачи и визуализации отражения упорядоченной решетки, только атомы Cd с яркими точками или темными точками, такими как высокое разрешение, как показано на рис. 4.

Наука об электронных микрофотографиях высокого разрешения 4

Как показано на рис. 4, показанное изображение с высоким разрешением изменяется в зависимости от толщины образца вблизи оптимального недофокуса с высоким разрешением. Поэтому, когда мы получаем изображение с высоким разрешением, мы не можем просто сказать, что это за изображение с высоким разрешением. Мы должны сначала сделать компьютерное моделирование, чтобы рассчитать структуру материала при различной толщине. Изображение вещества в высоком разрешении. Серия изображений с высоким разрешением, рассчитанных компьютером, сравнивается с изображениями с высоким разрешением, полученными в ходе эксперимента, для определения изображений с высоким разрешением, полученных в ходе эксперимента. Изображение компьютерного моделирования, показанное на рис. 5, сравнивается с изображением высокого разрешения, полученным в ходе эксперимента.

Наука об электронных микрофотографиях высокого разрешения 5

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

黑人精品视频一区二区三区-在线播放免费av大片-在线免费观看日韩精品-日本av在线观看一区二区三区| 亚洲精品成人久久av中文字幕-中文av毛片在线观看-一本之道加勒比在线视频-日韩av一区二区在线观看不卡| 久久偷拍视频免费观看-国产精品国产精品偷麻豆-国产精品一品二区三区最新-精品国产亚洲一区二区三区| 国产一级特黄高清大片-欧美精品一区二区三区精品-久久亚洲av成人网人人动漫-日本熟女网站一区二区三区| 国产精品一区二区小视频-欧美亚洲国产精品激情在线-日韩免费视频一区二区三区视频-精品亚洲国产成av人片传媒| 国产免费无套精品视频-日本特色特黄aaa大片免费-日本精品免费一区二区三区-九九热精品视频在线免费| 午夜激情小视频在线观看-日本福利视频免费观看-日本人妻久久精品欧美一区-国产成人自拍小视频在线| 日韩精品中文一区二区三区在线-午夜视频国产在线观看-日韩中文字幕av有码-最新日韩精品视频免费在线观看| 日韩欧美国产在91啦-激情偷拍自拍在线观看-一本大道久久香蕉成人网-亚洲精品中文字幕观看| 国产三级一区二区三区视频在线-日韩av在线视频网站-99久国产精品午夜性色福利-精品国产女同一区二区三区| 久久网站黄色一级视频-精品极品三级久久久久电-国产精品天堂蜜av在线播放-国产传媒免费在线观看| 国产亚洲成人精品久久久-亚洲免费av高清在线观看-在线观看国内自拍视频-亚洲国产成人精品综合色| 久久亚洲av综合悠悠色-91手机精品免费在线播放-午夜福利一区二区三区在线播放-97在线精品观看视频| 国产偷拍自拍视频在线观看-丰满欧美熟妇视频在线-亚洲午夜激情在线观看-四虎视频精品免费观看| 97视频资源在线观看-国产av天堂久久精品-亚洲av一二三四区又爽又色又爽-悠悠色网视频在线精品| 97视频在线观看精品在线-久久精品欧美日韩一区麻豆-亚洲精品在线少妇内射-国产在线一区二区三区三州| 国产 av 一区二区三区-日韩黄色三级三级三级-久久精品视频这里只有精品-日韩精品中文字幕亚洲| 国产人妖直男在线视频-午夜福利视频合集91-亚洲五月自拍欧美第一页-国产主播免费在线一区二区| 亚洲国产成人不卡高清麻豆-精品国产精品三级在线专区-亚洲欧美国产日韩一区-亚洲高清日本一区二区| 久久精品国产亚洲av五区-日韩麻豆视频在线观看-亚洲欧洲国产成人综合在线-美利坚合众国亚洲视频| 国产偷拍自拍视频在线观看-丰满欧美熟妇视频在线-亚洲午夜激情在线观看-四虎视频精品免费观看| 国产av一区二区三区在线-亚洲国产欧洲在线观看-跪求能看的国产熟女av网-国内色精品视频在线网址| 国产偷拍自拍视频在线观看-丰满欧美熟妇视频在线-亚洲午夜激情在线观看-四虎视频精品免费观看| 国产精品乱码一区二区三区视频-国产自拍精品在线一区二区-五月综合丁香婷婷久久-在线国产精品一区二区三区| 日韩黄色精品中文视频-久久精品国产亚洲懂色-欧洲美女日韩精品视频-国产一区二区三区精品愉拍| 久久97久久97精品免视看秋霞-黄片av毛片在线免费观看-日韩av高清不卡免费观看-成人午夜福利视频观看地址| 91国产自拍视频在线-久久综合婷婷伊人五月天-国产日韩一区二区三区高清视频-日本电影一区二区5566| 成熟女人毛茸茸的免费视频-91麻豆精品国产自产在线游戏-国产男女猛烈无遮挡免费视频-一级黄片国产精品久久| 青青草视频成人在线公开-激情中文字幕一区二区三区-亚洲国产精品综合久久网各-日本中文字幕有码高清| 亚洲少妇插进去综合网-久草免费在线人妻视频-丰满人妻熟妇乱精品视频-日韩极品精品视频免费在线观看| 精品久久激情中文字幕-扒下语文老师的丝袜美腿-日韩欧美精品在线免费看-国产成人亚洲精品在线| 美女福利视频一区二区-在线观看你懂的日韩精品亚洲-男女丁丁一进一出视频-蜜臀av一区二区三区精品人妻| 欧美高清视频在线高清观看-四虎最新在线播放视频-亚洲中文字幕永久在线全国-亚洲国产av成人精品成人| 日韩欧美国产亚洲中文-亚洲国产av第一福利网-亚洲欧洲日韩一区二区三区-91精品国产福利线观看久久| 天天躁夜夜躁狠狠85麻豆-操美女逼视频免费软件-国产精品一区二区在线观看-一区二区三区免费观看视频在线| 精品国产欧美日韩电影-久久国产视频这里只有精品-深夜免费在线观看福利-久久久国产99精品视频| 日日夜夜久久国产精品-国产男女无遮挡猛烈免费观看-在线观看热久精品视频-国产香蕉视频在线内射| 成熟女人毛茸茸的免费视频-91麻豆精品国产自产在线游戏-国产男女猛烈无遮挡免费视频-一级黄片国产精品久久| 91天美精东果冻麻豆-亚洲自拍伦理在线观看-国产成人一区二区三区日韩精品-在线中文字幕av日韩| 很黄无遮挡在线免费网站-韩国精品一区福利视频在线播放-爱看色黄色大片儿网站-日韩综合一区二区三区在线观看| 亚洲av优女天堂熟女美女动态-激情免费视频一区二区三区-一区二区三区国产日韩av-最新国产内射在线免费看|