色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The welding characteristics of austenitic stainless steel: the elastic and plastic stress and strain are very large in the welding process, but there are few cold cracks. There is no quenching hardening zone and grain coarsening in welded joint, so the tensile strength of weld is high.

The main problems of austenitic stainless steel welding are: large welding deformation; because of its grain boundary characteristics and sensitivity to some trace impurities (s, P), it is easy to produce hot cracks.

Five major welding problems and treatment measures of austenitic stainless steel

The formation of chromium carbide reduces the intergranular corrosion resistance of welded joints

Intergranular corrosion: according to the theory of poor chromium, when the weld and heat affected zone are heated to 450 ~ 850 ℃ sensitization temperature zone, chromium carbide precipitates on the grain boundary, resulting in poor chromium grain boundary, which is not enough to resist corrosion. Zero

(1) The following measures can be adopted to limit the intergranular corrosion of weld and the corrosion of sensitized temperature zone on the target material

a. In order to avoid the formation of Cr23C6, stabilizing elements such as Ti and Nb were added to the base metal to reduce the carbon content in the base metal and weld.

b. The dual phase structure of austenite and a small amount of ferrite is formed in the weld. When there is a certain amount of ferrite in the weld, the grain size can be refined, the grain area can be increased, and the amount of chromium carbide precipitation per unit area of grain boundary can be reduced.

Cr23C6 is preferentially formed in ferrite instead of poor chromium at austenite grain boundary; ferrite between austenite can prevent corrosion from diffusing into interior along grain boundary.

c. Control the residence time in the sensitization temperature range. Adjust the welding thermal cycle to shorten the residence time of 600-1000 ℃ as much as possible. The welding method with high energy density (such as plasma argon arc welding) can be selected. The welding line energy is smaller. Argon gas is applied to the back of the weld or copper pad is used to increase the cooling rate of the welded joint. The number of arc striking and arc stopping is reduced to avoid repeated heating. The contact surface between multi-layer welding and corrosive medium is as last as possible Welding, etc.

d. After welding, solid solution treatment or stabilization annealing (850-900 ℃) should be carried out after heat preservation and air cooling to fully precipitate carbide and accelerate chromium diffusion.

(2) For this reason, the following preventive measures can be taken:

Due to the strong diffusion ability of carbon, it will segregate in the grain boundary and form supersaturation state during cooling, while Ti and Nb will remain in the crystal due to the low diffusion ability. When the welded joint is reheated in the sensitized temperature range, the supersaturated carbon will precipitate in the form of Cr23C6.

a. Reduce carbon content. For stainless steel containing stabilizing elements, the carbon content should not exceed 0.06%.

b. Adopt reasonable welding process. In order to reduce the residence time of overheated zone at high temperature, a smaller welding line energy should be selected to avoid “medium temperature sensitization” effect in the welding process.

In case of double side welding, the weld contacting with corrosive medium should be welded last (this is the reason why internal welding of large diameter thick wall welded pipe is carried out after external welding). If it cannot be implemented, the welding specification and weld shape should be adjusted to avoid the overheated area contacting with corrosive medium from being sensitized again.

c. Post weld heat treatment. After welding, solid solution or stabilization treatment shall be carried out.

Why do You Having Problems Frequently when Welding Stainless Steel? 2

Stress corrosion cracking

The following measures can be taken to prevent the occurrence of stress corrosion cracking:

a. Correct selection of materials and reasonable adjustment of weld composition. High purity chromium nickel austenitic stainless steel, high silicon chromium nickel austenitic stainless steel, ferrite austenite stainless steel and high chromium ferrite stainless steel have good stress corrosion resistance. When the weld metal is austenitic ferrite dual phase steel, the stress corrosion resistance is good.

b. Eliminate or reduce the residual stress. The surface residual stress was reduced by polishing, shot peening and hammering.

c. Reasonable structural design. In order to avoid large stress concentration.

Why do You Having Problems Frequently when Welding Stainless Steel? 3

Welding hot crack (weld crystallization crack, HAZ liquefaction crack)

The hot crack sensitivity mainly depends on the chemical composition, microstructure and properties of the material. Ni is easy to form low melting point compounds or eutectic with impurities such as s and P. segregation of boron and silicon will promote hot cracking.

It is easy to form coarse columnar crystal structure with strong directivity, which is conducive to the segregation of harmful impurities and elements, thus promoting the formation of continuous intergranular liquid film and improving the sensitivity of hot cracking. If the welding is heated unevenly, it is easy to form large tensile stress and promote the generation of welding hot cracks.

Preventive measures:

a. The contents of harmful impurities s and P should be strictly controlled.

b. Adjust the structure of weld metal. The δ phase in the weld can refine the grain size, eliminate the directionality of single-phase austenite, reduce the segregation of harmful impurities in the grain boundary, and the δ phase can dissolve more s and P, reduce the interface energy and form the liquid film between grains.

c. Adjust the composition of weld metal alloy. The sensitivity to hot cracking can be reduced by adding Mn, C, N and trace elements such as cerium, pickaxe and tantalum in single phase austenitic steel.

d. Process measures. In order to prevent the formation of coarse columnar grains, the small heat input and small cross-section weld bead should be used.

For example, 25-20 austenitic steel is prone to liquefying cracks. By strictly limiting the impurity content and grain size of the base metal, adopting high energy density welding method, small line energy and increasing the cooling rate of the joint, etc.

Why do You Having Problems Frequently when Welding Stainless Steel? 4

Embrittlement of welded joint

The plasticity of welded joint should be guaranteed for hot strength steel to prevent high temperature embrittlement; low temperature steel should have good low temperature toughness to prevent brittle fracture of welded joint at low temperature.

Welding deformation is large

Due to the low thermal conductivity and large expansion coefficient, the welding deformation is large, so the fixture can be used to prevent deformation. Selection of welding methods and welding materials for austenitic stainless steel: austenitic stainless steel can be welded by TIG, MIG, paw and saw.

The welding current of austenitic stainless steel is small because of its low melting point, small thermal conductivity and high resistance coefficient. Narrow weld and narrow pass should be used to reduce high temperature residence time, prevent carbide precipitation, reduce weld shrinkage stress and reduce hot crack sensitivity.

The composition of welding material, especially Cr and Ni, is higher than that of base metal. The welding material containing a small amount of ferrite (4-12%) is used to ensure good crack resistance (cold cracking, hot cracking and stress corrosion cracking) of the weld.

When ferrite phase is not allowed or impossible to exist in the weld, the welding material containing Mo, Mn and other alloy elements should be selected.

C, s, P, Si and Nb in welding materials should be as low as possible. NB may cause solidification cracks in pure austenite weld, but a small amount of ferrite in the weld can be effectively avoided.

Nb containing welding materials are usually used for welding structures which need to be stabilized or stress relieved after welding. When submerged arc welding is used to weld medium plate, the burning loss of Cr and Ni can be supplemented by the transition of alloy elements in flux and welding wire;

Due to the deep penetration, attention should be paid to prevent the formation of hot cracks in the central zone of the weld and the reduction of corrosion resistance in the heat affected zone. Attention should be paid to the selection of thinner welding wire and smaller welding line energy. The welding wire should be low in Si, s and P.

The ferrite content in weld of heat-resistant stainless steel should not be more than 5%. For austenitic stainless steel with more than 20% Cr and Ni, high Mn (6-8%) welding wire and alkaline or neutral flux should be selected to prevent Si addition to weld and improve its crack resistance.

The special flux for austenitic stainless steel increases little Si, which can transfer alloy to the weld and compensate the burning loss of alloy elements to meet the requirements of weld performance and chemical composition.

Why do You Having Problems Frequently when Welding Stainless Steel? 5
午夜激情小视频在线观看-日本福利视频免费观看-日本人妻久久精品欧美一区-国产成人自拍小视频在线| 日韩精品人妻久久久一二三-亚洲精品呻吟久久粉嫩av-女同按摩高潮中出亚洲-亚洲成人精品福利在线| 色男人天堂综合久久av-蜜桃精品一区二区三区蜜桃臀-国产粉嫩高中生第一次不戴套-成人激情自拍视频在线观看| 亚洲三级免费在线播放-国产男女做a视频免费在线观看-六月婷婷缴情七月丁香-国产黄色片三级久久久| 91精品国产福利在线观看-av在线免费观看播放-日本岛国免费在线观看-国产高清视频一区二区三区四区| 悠悠成人资源亚洲一区二区-国产成人综合亚洲国产-青青草在线公开免费视频-91精品日本在线视频| 中国美女欧美熟妇视频-五月爱婷婷丁香六月色-国产特黄特色成年女人毛片免-人妻精品一区二区三区久久| 亚洲少妇熟女一区二区三区-熟女熟妇少妇妇女乱熟-一区二区三区不卡国产视频-成人精品一区二区三区综合| 亚洲视频第一页在线观看-最新中文字幕国产精品-中文人妻熟妇人伦精品熟妇-国产福利91在线视频| 久久精品国产久精国产爱-久久超碰97中文字幕-久热这里只有精品视频一区-日韩av在线免费观看| 四虎国产在线播放精品免费99-一区二区三区中文字幕日本-91国偷自产中文字幕久久-青青草一级视频在线观看| 久久精见国产亚洲av高清热-国产一区国产二区亚洲精品-99久久精品视频一区二区-91精品亚洲欧美午夜福利| 国产老熟女精品一区二区三区-精品国精品自拍自在线-亚洲国内自拍愉拍少妇-欧美日韩一级片免费播放| 精品国产日韩一区三区-成人激情毛片免费在线看-国产一区二区高清日韩-日韩成人黄片免费在线观看| 岛国av大片在线观看-欧美高清一级二级三级-中文字幕中文字幕777-国产日韩亚洲精品视频| 亚洲一区二区三区四区中文字幕-精品久久久久久蜜臀-国产传媒视频免费观看网站-国产三级在线观看一区二区| 日韩有码中文字幕在线视频-草草影院国产在线观看-日韩中文字幕有码午夜美女-亚洲第二十页中文字幕| 台湾香港a毛片免费观看-国产美女口爆吞精的后果-亚洲天堂成人免费在线-国模在线视频一区二区三区| 正在播粉嫩丰满国产极品-国产成人午夜福利av在线-国产精品自拍自在线播放-一区二区三区四区日本视频| 亚洲伊人色综合网站亚洲伊人-香蕉久久国产超碰青草91-激情综合七月插插综合-亚洲一区二区三区夏目彩春| 国产丝袜美腿视频在线观看-美女被男人摸胸动态图-少妇精品高潮叫久久久-午夜激情福利国产精品| 免费观看国产裸体视频-久久亚洲精精品中文字幕早川悠里-99精品国产一区二区青青牛奶-久久精品成人av免费观看| 久久精品国产亚洲av高-国产插菊花综合网亚洲-看亚洲裸体做爰av肉-成人免费观看性生活片| 亚洲高清无吗视频在线播放-国产亚洲最新在线不卡-久久亚洲国产精品成人-二区三区在线免费观看视频| 亚洲av成人精品日韩一区二区-日本50岁成熟丰满熟妇-欧美日韩久久婷婷一区二区-亚洲成人天堂在线观看| 日本淫片一区二区三区-精品亚洲人伦一区二区三区-精品成人短视频在线观看-日韩亚州欧美国产另类| 人妻中文字幕在线观看-日本精品一级影片欧美精品-91偷自国产一区二区三区-女人高潮被爽到呻吟在线| 色综合久久中文综合网亚洲-久久精品午夜亚洲av-男人的天堂av日韩亚洲-91欧美激情在线视频| 一区二区三区四区五区黄色-色哟哟精品免费专区在线-很色精品99在线观看-亚洲一区二区三区精品久久| 国产传媒高清视频在线-日韩人妻少妇av在线-日本久久精品高清视频-丰满肥臀大屁股熟妇激情| 国产av一区二区三区在线-亚洲国产欧洲在线观看-跪求能看的国产熟女av网-国内色精品视频在线网址| 美女福利视频一区二区-在线观看你懂的日韩精品亚洲-男女丁丁一进一出视频-蜜臀av一区二区三区精品人妻| 国产精品99一区二区三区-伦理激情婷婷综合五月天-综合久久av一区二区三区-99精品国产在热久久| 日日夜夜久久国产精品-国产男女无遮挡猛烈免费观看-在线观看热久精品视频-国产香蕉视频在线内射| 四虎在线观看永久免费-久久精品熟女亚洲av香蕉-av国内精品久久久久影院三级-亚洲国产一区二区三区av| 换脸av一区二区三区-少妇精品亚洲一区二区成人-亚洲熟女综合一区二区三区-国产91久久精品成人看| 久久亚洲av综合悠悠色-91手机精品免费在线播放-午夜福利一区二区三区在线播放-97在线精品观看视频| 国产精品人成在线播放蜜臀-老司机午夜福利视频在线-亚洲激情av免费观看-国产情侣91在线观看| 亚洲视频在线观看第一页-精品偷拍另类欧美日韩-日韩高清在线一区二区三区-久久天天操狠狠操夜夜av| 91精品国产在热久久-亚洲欧美乱综合小说区-丰满少妇被粗大猛进人高清-99精品国产一区二区青青性色| 少妇无套内谢免费视频-色婷婷性感在线观看视频-国产免费黄色一级大片-国产亚洲精品麻豆一区二区|