色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The roughness?refers to the irregularities of small gaps and micro-peaks and valleys on the material surface after processing. If the smoothness is low, it can affect various aspects in the usage industry, such as sealing, wear resistance, stability, etc. How should we improve the manufacturing techniques to enhance the smoothness and processing precision of workpieces?

Causes of Roughness Issues

The poor roughness?may be attributed to the following reasons:

1.Improper tool selection: Severe tool wear or poor quality can lead to issues such as burrs and cracks on the drilled surface.

2.Cutting speed too fast or too slow: Excessive cutting speed can result in a rough machining surface, while too slow a speed may lead to an unsmooth surface.

3.Improper use of coolant: Incorrect use of coolant, such as low concentration or contaminated coolant, can also result in an unsmooth surface on the drilled hole.

4.Incorrect machining parameter settings: Incorrect machining parameter settings may cause unstable cutting, thereby resulting in an unsmooth surface on the drilled hole.

rugosidade

Principles for Resolving Roughness Issues

To address the issue of poor machining roughness, it is necessary to address specific reasons, and the specific methods are as follows:

1.Pay attention to tool selection: Choose high-quality, rigid, and minimally wearing tools.

2.Select the appropriate cutting speed: Adjust the cutting speed based on the machining material and drill bit material to ensure cutting quality.

3.Make rational use of coolant: Choose coolant with an appropriate concentration, maintain the cleanliness of the coolant, and replace it in a timely manner.

4.Set machining parameters reasonably: According to the material and drill bit conditions, set cutting speed, feed rate, and start frequency, among other machining parameters, in a reasonable manner.

Methods to Improve Surface Roughness in Part Machining 2

Improving roughness through cutting parameter adjustments

The three elements of cutting conditions—cutting speed, feed rate, and depth of cut—directly cause tool damage. With the increase in cutting speed, the temperature at the tool tip rises, leading to mechanical, chemical, and thermal wear. A 20% increase in cutting speed results in a 50% reduction in tool life.

The relationship between feed conditions and tool wear occurs within a very narrow range. However, a large feed rate increases cutting temperature and leads to significant wear. Its impact on the tool is smaller compared to cutting speed. While the depth of cut has a smaller impact on the tool than cutting speed and feed rate, during micro-cutting, a hardened layer is produced in the machined material, also affecting tool life.

Users should choose the cutting speed based on factors such as the processed material, hardness, cutting conditions, material type, feed rate, and depth of cut. The selection of the most suitable processing conditions is based on these factors. Ideally, regular and stable wear reaching the tool’s lifespan is considered optimal.

However, in practical operations, the choice of tool life is related to tool wear, changes in the machined dimensions, surface quality, cutting noise, machining heat, etc. When determining processing conditions, research should be conducted based on the actual situation. For difficult-to-machine materials like stainless steel and heat-resistant alloys, coolant can be used, or blades with good rigidity can be selected.

The correct selection of these three elements is a major focus of the principles of metal cutting courses.

Cutting speed (linear speed, circumferential speed) V (meters per minute)

To choose the spindle speed per minute, it is necessary to first determine the appropriate cutting speed V. The selection of V depends on the tool material, workpiece material, and processing conditions.

Tool material

For carbide, a higher V can be chosen, generally above 100 meters per minute. Technical parameters are usually provided when purchasing blades, indicating the recommended cutting speeds for different materials. For high-speed steel, V can only be lower, generally not exceeding 70 meters per minute, often ranging from 20 to 30 meters per minute.

Workpiece material

For materials with high hardness, a lower V is chosen. For cast iron, a lower V is selected. When the tool material is carbide, a speed of 70 to 80 meters per minute can be chosen. For low carbon steel, V can be above 100 meters per minute, and for non-ferrous metals, a higher speed (100 to 200 meters per minute) can be chosen. For hardened steel and stainless steel, V should be chosen lower.

Condi??es de processamento

For rough machining, a lower V is chosen, while for finishing, a higher V is chosen.

If the rigidity system of the machine tool, workpiece, and tool is poor, a lower V should be chosen.

If the numerical control program uses S as the spindle speed per minute, then S should be calculated based on the workpiece diameter and cutting speed V: S (spindle speed per minute) = V (cutting speed) * 1000 / (3.1416 * workpiece diameter).

If the numerical control program uses constant linear speed, then S can directly use the cutting speed V (meters per minute).

Feed Rate (Cutting Depth)

The feed rate, denoted as F, is primarily determined by the surface roughness requirements of the workpiece. In precision machining, where a high surface finish is required, a smaller feed rate is chosen, typically ranging from 0.06 to 0.12 mm per revolution of the spindle. For rough machining, a larger feed rate can be chosen.

The selection of the feed rate is mainly influenced by tool strength and is generally chosen to be 0.3 or higher. When the tool’s main clearance angle is large, resulting in lower tool strength, the feed rate should not be too high. Additionally, considerations should be given to the power of the machine tool, as well as the rigidity of both the workpiece and the tool.

Numerical control programs can use two units for the feed rate: mm/minute or mm/spindle revolution. The units used above are in mm/spindle revolution. If mm/minute is used, the conversion formula is as follows: Feed rate per minute = Feed rate per revolution * Spindle revolutions per minute.

Cutting Depth

In precision machining, the cutting depth is generally chosen to be below 0.5 (in terms of radius). For rough machining, the selection depends on the workpiece, tool, and machine tool conditions. For small lathes (with a maximum processing diameter below 400mm) turning annealed 45# steel, the radial cutting depth generally does not exceed 5mm.

It’s important to note that if the lathe’s spindle speed control uses ordinary frequency conversion speed regulation, when the spindle speed is very low (below 100-200 revolutions per minute), the motor output power will significantly decrease. In such cases, the cutting depth and feed rate can only be chosen to be very small.

Methods to Improve Surface Roughness in Part Machining 3

Deixe uma resposta

O seu endere?o de e-mail n?o será publicado. Campos obrigatórios s?o marcados com *

中文字幕在线永在少妇-97免费公开在线视频-国产三级自拍视频在线播放-黄色aaa三级三级三级| 国产深夜视频在线观看-丰满人妻熟妇乱又乱精品-青草视频在线观看资源-奇米网东京热日本人妻| 美女被狂躁到高潮视频-国产熟女精品自拍视频-亚洲中文字幕在线精品一区-成人在线中文字幕电影| 综合一综合二综合久久-亚洲一区二区三区视频免费观看-亚洲国产中文字幕一区二区-日韩人妻一区二区三区蜜桃视频| 免费国产精品黄色一区二区-日本熟女五十路六十路熟女-国产日韩欧美另类在线综合-亚洲一区二区中文字幕无线乱码| 黄色大片一级在线观看-蜜臀91精品国产高清在线-色综合久久鬼色综合久久-九九热精品视频在线免费看| 福利一区福利二区刺激-亚洲精品久久麻豆蜜桃-久久av蜜臀人妻一区二区三区-国产av剧情精品播放网站| 国产传媒高清视频在线-日韩人妻少妇av在线-日本久久精品高清视频-丰满肥臀大屁股熟妇激情| 91亚洲精品免费在线观看-加勒比国产精品综合久久-91九色精品丝袜久久人妻-正常人的性生活一个月几次| 亚洲天堂av资源在线-四虎永久免费在线观看国产-久久这里只有精品人妻-欧美黄色三级经典精品| 国产精品视频午夜福利-一本大道久久综合一区-成年深夜福利在线观看-国产传媒免费在线视频| 国产日本高清一区二区三区-久久亚洲成人精品性色-九九热99这里只有精品-亚洲愉拍自拍另类天堂| 国产精品剧情一区在线观看-精品伊人久久大香线蕉-一起草视频在线播放观看-精品少妇人妻av一区二区蜜桃| 美女脱掉内裤露屁屁最新章节-成人中文字幕在线观看的-国产极品尤物粉嫩在线观看-在线视频一区二区中文字幕| 岳的大肥屁熟妇五十路99-偷拍美女解手视频精品-日韩欧美一区二区三区精品-亚洲国产精品成人自拍| 国产精品一区二区在线观看免费-日本老熟妇色视频免费-亚洲码国产精品高潮在线-日韩一区二区三区日韩| 精品国产高清一区二区三区-亚洲av日韩av二区三区篇-亚洲精品一区高潮喷水-中文字幕人妻色偷偷久久皮| 色哟哟中文字幕在线播放-人人妻人人澡人人狠人人爽-国产午夜福利精品一区二区三区-性生活在线免费视频观看| 国产成人精品一区二区日出白浆-亚洲女优大片在线观看-明星换脸av一区二区三区-四虎影院国产精品久久| 国内自拍偷拍视频91-日本成人熟女一区二区三区-国产l精品国产亚洲区久久-久久精品成人中文字幕| 亚洲三级电影久久网络-中文字幕第一页亚洲天堂-九九热视频这里只有精-国产免费av国片精品| 日韩一卡二卡在线播放-亚洲国产精品懂色av-青青热久免费精品视频在-久久精品中文字幕一区二区三区| 在线视频观看一区二区三区-日韩成年人高清精品不卡一区二区-成人深夜节目在线观看-亚洲精品中文字幕一二三| 国产大奶子在线播放免费-中文字幕在线观看精品亚洲-日韩欧美精品一区二区三-国产手机av免费在线观看| 开心五月激情五月综合-国产88精品久久久久久-乱人伦精品视频在线观看-秘社一区二区三区一午夜日本| 亚洲一区二区欧美日韩-亚洲精品四虎在线观看-国产夫妻在线视频播放-激情人妻中文字幕中字福利在线| 日本淫片一区二区三区-精品亚洲人伦一区二区三区-精品成人短视频在线观看-日韩亚州欧美国产另类| 日韩成人深夜免费在线观看-成人av一区二区在线播放-日韩无套内射免费精品-国产精品一区白嫩在线观看| 日产中文字幕在线精品一区-日韩黄色特级片一区二区三区-8x8x精品国产自在现线拍-内射爆操视频在线观看| 国产亚洲精品精品国产亚洲综合l-99久久精品午夜一区二-青青草青娱乐免费在线视频-日本久久中文字幕一二三| 亚洲国产日韩欧美性生活-开心激情五月婷婷丁香-久久精品国产亚洲av热片-国产日产精品视频一区二区三区| 日韩精品少妇一二三区免费av-麻豆蜜桃av免费观看-亚洲欧洲日韩一区二区中文字幕-久久九特黄的免费大片| 欧美日韩激情免费观看-成年大片免费视频观看-俺来也去也网激情五月-在线国产精品自偷自拍| 国产一区二区在线中文字幕-欧洲中文字幕国产精品-国产精品蜜臀av免费观看四虎-国产一级特黄99久久| 91久久国产综合蜜桃-深夜激情在线免费观看-免费观看国产在线视频不卡-天堂在线精品免费亚洲| 久久超碰97中文字幕亚洲-亚洲成人精品在线一区二区-亚洲天天操夜夜操狠狠操-久久午夜鲁丝片午夜精品| 青草黄色成人中文视频-国产剧情av在线大学生-日韩av在线一卡二卡三卡-国产成人午夜福利影院| 精品国产高清一区二区广区-午夜少妇激情视频网站-亚洲av日韩精品一区在线-青草亚洲免费在线观看| 国语对白高清在线观看-久久av精品一区二区三区-日韩在线中文字幕不卡-免费视频成人高清观看在线播放| 亚洲精品毛片免费观看-精品一区二区三区四区激情-特黄特色大片女生高潮久久-欧美午夜福利视频自拍| 亚洲天堂av中文在线-亚洲精品有码中文字幕网络-在线播放国产一区二区不卡-香港毛片免费观看视频|