色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The oxidation with temperature in the cutting area can reach 1000°C significantly reduces the hardness and strength of the carbide, greatly shortening the tool’s lifespan and severely affecting the performance of carbide tools. The author of this paper investigates the high-temperature oxidation resistance and high-temperature performance of different carbide compositions, focusing on adjusting the cobalt content, WC grain size, and TaC/NbC/TiC additives. The following conclusions were drawn from this study.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 2

The Effect of Cobalt Content

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 3

Figure 3 shows the microstructure after oxidation of carbides?with different cobalt contents (all WC materials are WC-1). As the cobalt content increases, the microstructure of the carbide?oxides changes significantly. The oxide of the WC-6%Co carbide?has more and larger pores, the pores in the oxide of the WC-10%Co carbide?are significantly reduced, and the oxide of the WC-14%Co carbide?has virtually no large pores.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 4

Figure 4 shows the oxidation weight gain curves of carbides?with different cobalt contents. As the cobalt content increases, the oxidation weight gain of the carbides decreases sequentially. At 900°C, the oxidation weight gain of WC-6%Co, WC-10%Co, and WC-14%Co carbides are 11.92%, 11.46%, and 11.26%, respectively. Compared to WC-6%Co carbide, the oxidation weight gain of WC-10%Co and WC-14%Co carbides?at 900°C decreased by 3.8% and 5.5%, respectively. Therefore, although increasing the Co content can improve the high-temperature oxidation resistance of carbides, the improvement is not significant.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 5

Table 3 lists the oxidation reaction equations of each component in the carbide?and their Gibbs free energy. It is well known that during the oxidation of carbides, the oxidation of WC to WO3 results in significant volume expansion. The oxide WO3 is loose, porous, and volatile, producing volatile gases such as CO2, which provide more pathways for the oxidation diffusion process, thereby exacerbating the oxidation of the carbide. Although the binder phase is more prone to oxidation than the hard phase, the oxide formed from the binder phase is the relatively dense CoWO4, which can slow down the oxidation diffusion process of the carbide. Therefore, with the increase in cobalt content, more CoWO4 and less WO3 are formed, resulting in a denser microstructure of the oxides and consequently improving the high-temperature oxidation resistance of the carbide.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 6

Table 4 shows the room temperature hardness and high-temperature hardness of carbides?with different cobalt contents. At room temperature, the more cobalt content, the lower the hardness of the carbide. When the temperature rises to 800°C, the hardness of the carbides decreases significantly, with the rate of decrease reducing as the cobalt content increases. At 800°C, the hardness of carbides with higher cobalt content is actually higher than that of carbides with lower cobalt content.

 

Both the hard phase and the binder phase exhibit some thermal expansion at high temperatures, with the binder phase experiencing greater thermal expansion and generating larger stress, which offsets some of the load force. This is one of the reasons why the high-temperature hardness of the carbide?increases with the increase in cobalt content.

The Effect of WC Grain Size

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 7

Figure 6 shows the oxidation weight gain curves of 4#, 5#, and 6# carbides?prepared with WC of different Fischer particle sizes. From room temperature to 825°C, the oxidation weight gain curves of the three carbides with different WC grain sizes overlap; however, in the range of 825-900°C, the finer the WC grains, the less the oxidation weight gain of the carbides. At 900°C, the oxidation weight gains of 4#, 5#, and 6# carbides?are 9.18%, 8.67%, and 8.20%, respectively. Compared to the 4# carbide, the oxidation weight gain of the 5# and 6# carbides?at 900°C decreased by 5.6% and 10.7%, respectively. Therefore, under the same Co content, refining the WC grains can improve the high-temperature oxidation resistance of carbides.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 8

Figure 7 shows the XRD diffraction patterns after oxidation of carbides?with different WC grain sizes. Since the compositions of 4#, 5#, and 6# carbides?are the same, there is no significant difference in their oxidation products. Therefore, the diffraction patterns of the oxides of the three carbides?with different WC grain sizes are essentially identical.

 

The Oxidation Resistance and hardness Differences of Carbides with Different WC Grain Sizes

The differences in the oxidation resistance of carbides?with different WC grain sizes can be mainly attributed to the following two points:

In the case of a uniform carbide?structure, finer WC grains result in more phase boundaries between WC and the binder phase. The finer WC grains are better encapsulated by the binder phase, and the oxidation products of the binder phase can, to some extent, hinder the oxidation diffusion process, thereby improving the high-temperature oxidation resistance of the carbide.

Finer WC grains have fewer grain boundary defects and smaller grain boundary voids between the WC grains, which correspondingly reduce the oxidation diffusion channels, thus enhancing the high-temperature oxidation performance of the carbide.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 9

Table 5 shows the room temperature hardness and high-temperature hardness of carbides?with different WC grain sizes. At room temperature, the finer the WC grains, the higher the hardness of the carbide. When the temperature rises to 800°C, the hardness of the carbides decreases significantly, and the rate of decrease in high-temperature hardness increases as the WC grain size decreases. Clearly, although the room temperature hardness of the carbide?increases as the WC grain size decreases, the high-temperature hardness becomes lower.

 

The Effect of TaC/NbC/TiC Additives

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 10

Figure 8 shows the oxidation weight gain curves of carbides?with different carbide additives (all WC materials are WC-3). The oxidation weight gain curves and oxide diffraction patterns of WC-Co and WC-Co-TaC carbides?are basically the same, with oxidation weight gains of 10.58% and 10.20% at 900°C, respectively. Among the four carbides, WC-Co-NbC carbide?has the highest oxidation weight gain, while WC-Co-TiC carbide?has the lowest oxidation weight gain, with oxidation weight gains of 11.68% and 9.05% at 900°C, respectively.

dureza

Figure 9 shows the XRD diffraction patterns of carbides?with different carbide additives after oxidation. The oxidation of the carbides produces corresponding oxides.

In WC-Co carbides, the added TaC, NbC, and TiC all exist in the form of W-containing solid solutions. The (Nb,W)C solid solution oxidizes earlier than WC and has many phase boundaries with WC. Without the protective “encapsulation” of the binder phase, the oxidation of the solid solution promotes the oxidation of WC, thereby accelerating the oxidation of the carbide. The oxidation weight gain of WC-Co-TaC carbide?is the same as that of WC-Co carbide. This is because the (Ta,W)C solid solution reacts simultaneously with WC, and since the hard phase WC is the main component, the loose and porous WO3 phase predominantly controls the oxidation rate of the carbide. Therefore, the addition of TaC does not significantly affect the high-temperature oxidation resistance of the carbide.

In summary, under the same conditions of grain size and cobalt content, the addition of TaC has no significant effect on the high-temperature oxidation resistance of the carbide. However, the addition of NbC significantly reduces the high-temperature oxidation resistance of the carbide, with a reduction of 10.4%, while the addition of TiC significantly improves the high-temperature oxidation resistance of the carbide, with an improvement of 14.5%.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 11

Table 6 shows the room temperature hardness and high-temperature hardness of carbides?with different carbide additives. At room temperature, the hardness of the carbides with TaC, NbC, and TiC additives is comparable to that of the WC-Co carbide. When the temperature rises to 800°C, the high-temperature hardness of the carbides with TaC, NbC, and TiC additives is higher than that of the WC-Co carbide, and the rate of decrease in high-temperature hardness is significantly reduced.

It is well known that solid solutions exhibit good red hardness and provide structural support to the overall carbide, helping it maintain high hardness under high-temperature conditions. Additionally, the solid solutions contribute to solid solution strengthening of the Co phase, which increases the hardness of the Co phase. Therefore, the addition of TaC, NbC, and TiC results in carbides?exhibiting good high-temperature hardness.

Conclus?o

This study investigated the effects of cobalt content, WC grain size, and types of solid solutions on the high-temperature oxidation resistance and high-temperature hardness of carbides. The conclusions are as follows:

1.Increasing the cobalt content improves the high-temperature oxidation resistance of the carbide?and significantly increases the high-temperature hardness.

2.Reducing the WC grain size enhances the high-temperature oxidation resistance of the carbide?but significantly reduces the high-temperature hardness.

3.Compared to WC-Co carbides, the addition of TaC has no significant effect on the high-temperature oxidation resistance of the carbide, the addition of NbC decreases the high-temperature oxidation resistance, and the addition of TiC significantly improves the high-temperature oxidation resistance. All three additives, TaC, NbC, and TiC, significantly enhance the high-temperature hardness of the carbide.

Deixe uma resposta

O seu endere?o de e-mail n?o será publicado. Campos obrigatórios s?o marcados com *

日韩97精品一区二区三区-九九日本黄色精品视频-一进一出流出白浆视频-国产亚洲精品不卡视频| 亚洲黄色美女视频大全-成上人色爱av综合网-亚洲一区二区三区激情在线观看-久久91精品国产一区二区| 精品国产欧美日韩电影-久久国产视频这里只有精品-深夜免费在线观看福利-久久久国产99精品视频| 亚洲精品综合久中文字幕-色老头国产av一区二区三区-久久夜色精品亚洲噜噜国产-资源新版在线天堂偷自拍| 草草草草伦理少妇高清-国内精品视频网站草草-国产精品精国产在线观看-国产麻豆激情av在线| 九九九热在线免费观看-亚洲午夜理论片在线观看-欧美日韩亚洲国产第一-国产高清一区二区av在线| 亚洲免费国产午夜视频-女同亚洲一区二区三区精品久久-欧美一级黄片高清免费-久久国产亚洲中文字幕| 对天堂网在线观看av-一本色道久久亚洲狠狠躁-少妇被粗大的猛进视频-日韩熟女一区二区精品视频| 国内自拍偷拍视频91-日本成人熟女一区二区三区-国产l精品国产亚洲区久久-久久精品成人中文字幕| 亚洲av优女天堂熟女美女动态-激情免费视频一区二区三区-一区二区三区国产日韩av-最新国产内射在线免费看| 久久成人av一区二区三区-人妻一区二区三区久久丰满-日韩在线播放视频不卡-亚洲成熟女人一区二区三区| 国产一区二区在线观看不卡-日本高清中文字幕有码在线-日本女优在线观看一区二区三区-在线观看免费四虎av| 久热免费观看视频在线-久久精品免费看国产成人-91极品女神嫩模在线播放-青草视频在线观看久久| 你懂的视频网站亚洲视频-欧美色欧美亚洲另类搞逼-国产三级精品三级精品在一区-亚洲国产午夜精品在线| av免费在线观看网站大全-日本av一区二区三区视频-国产精品日韩一区二区在线-亚洲av永久精品一区二区三区| 中文一区二区三区免费毛片-99久久久69精品一区二区三区-精品国产一级二级三级在线-初撮五十路熟女柏木舞子| 国产免费无套精品视频-日本特色特黄aaa大片免费-日本精品免费一区二区三区-九九热精品视频在线免费| 麻豆国产av一区二区精品-久久福利社最新av高清精品-丝袜美腿亚洲综合伊人-亚洲欧洲av一区二区三区| 亚洲精品毛片免费观看-精品一区二区三区四区激情-特黄特色大片女生高潮久久-欧美午夜福利视频自拍| 国内熟妇与亚洲洲熟妇妇-伊人久久亚洲一区二区三区-亚洲av不卡在线短片-午夜国产理论大片高清| 九九热在线视频精品一-国产乱码精品一区二区蜜臀-乱妇乱熟女妇熟女网站视频-国产精品午夜视频在线| 传媒精品视频在线观看-久久蜜汁成人国产精品-国产精品伦理视频一区三区-丰满少妇特黄一区二区三区| 国产精品一区二区在线观看免费-日本老熟妇色视频免费-亚洲码国产精品高潮在线-日韩一区二区三区日韩| 午夜性色福利在线视频福利-久久精品视频免费获取地址-亚洲一区二区三区在线观看不卡-无套进入美女免费观看视频| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 华人精品在线免费观看-国产熟女精品一区二区三区-国产成人午夜视频网址-女女同性女同一区二区三区九色| 日韩精品视频网在线播放-亚洲综合网一区二区三区偷拍-岛国av在线播放观看-欧美日韩国产另类综合| 国产性色av综合亚洲不卡-中文字幕一区二区在线资源-久久四十路五十路六十路-91九色在线观看免费| 天天射天天插天天色综合-亚洲一二三四区中文字幕-97视频精品在线观看-久久婷婷激情五月综合色| 国产熟女av中文字幕-国产星空传媒视频在线观看-久久精品在线精品视频-亚洲国产av卡一卡二| 亚洲综合不卡一区二区三区-中文字幕一区二区人妻秘书-国产免费午夜精品理论-中文字幕人妻精品一区二区| 亚洲综合精品一区二区在线-国产亚洲精品视频在线播放-国产精品经典三级免费观看-五月婷婷六月丁香视频| 日韩欧美亚洲国产首页-色婷婷色久悠悠综合在线-亚色综合久久国产精品-日本岛国免费在线播放| 亚洲av成人精品爽爽-国产麻豆91在线播放-国产精品久久精品久久精品-蜜臀久久综合一本av| 亚洲中文成人乱码在线-国产一区二区三区久久综合-成人在线观看免费国产视频-一区二区水蜜桃视频在线观看| 日韩有码中文字幕在线视频-草草影院国产在线观看-日韩中文字幕有码午夜美女-亚洲第二十页中文字幕| 色综合久久中文综合网亚洲-久久精品午夜亚洲av-男人的天堂av日韩亚洲-91欧美激情在线视频| 91九色精品人成在线观看-国产成人免费综合激情-新久久国产色av免费看-av网站国产主播在线| 精国产精品亚洲二区在线观看-日韩人妻少妇一区二区三区-久久视频这里只要精品-亚洲精品欧洲综合在线观看| 精品国产高清一区二区三区-亚洲av日韩av二区三区篇-亚洲精品一区高潮喷水-中文字幕人妻色偷偷久久皮| 婷婷精品国产亚洲av不片-色播放视频在线观看视频在线播放-色综合91久久精品中文字幕-午夜视频网一区二区三区|