色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

To achieve the sustainable development of tungsten resources in the carbide?tool industry, it is essential to develop high-grade carbide?tools that enhance tool performance, improve material utilization, recycle old tool materials, and continuously research new carbide?tool materials, while also promoting the use of other tool materials.

Carbide Tools' Sustainable Development of Tungsten Resources 2

Development of High-Grade Carbide?Tools

China has become the world’s manufacturing center and the largest market for cutting tools. During the 11th Five-Year Plan, domestic tools accounted for over 65% of the market share, but these products primarily fall in the mid to low-end categories, necessitating significant imports of high-grade tools. In 2010, China’s tool consumption was about 33 billion yuan, with approximately 11 billion yuan spent on imported high-grade tools, while domestically developed high-grade tools accounted for only about 1 billion yuan in sales. This situation results in a significant consumption of tungsten resources with low added value.

Developing high-grade carbide?tools is crucial for reducing tungsten resource consumption and promoting sustainable development. For example, indexable CNC blades not only inherit the features of high-end solid carbide?tools but also showcase integration in design and manufacturing, excellent chip-breaking designs, and diverse coating options. Compared to solid carbides, indexable blades significantly increase material utilization; for instance, Seco’s DOUBLE OCTOMILL? has 16 cutting edges, while Iscar’s H400 olive-shaped blade can be used over 10 times.

Improving the Utilization of Carbide?Tool Materials

Cutting tools often show minimal wear when they reach normal wear standards; directly classifying these tools as waste leads to significant tungsten resource wastage. Advanced regrinding and recoating technologies can remanufacture such tools, allowing them to maintain cutting performance multiple times and thus improving the utilization of carbide?tool materials.

Regrinding of carbide?tools involves classifying regrindable tools based on the extent of edge damage, determining suitable regrinding plans, and completing the process through rough grinding, fine grinding, and edge reinforcement. After rough and fine grinding, the cutting edge may have defects like micro-chipping and micro-cracking. Appropriate edge reinforcement methods can eliminate these defects, increasing edge strength and tool lifespan. Regrinded tools can also be coated again as needed.

Due to the standardized and modular nature of indexable blades, the regrinding process can also be standardized. Table 1 outlines the main regrinding processes and characteristics for indexable blades. After proper regrinding and recoating, the cutting performance of carbide?tools during rough machining is about 50% to 80% of new tools, while during finishing, it is about 85% to 90%. Through advanced regrinding and recoating technologies, carbide?tools can repeatedly demonstrate their cutting performance, thus enhancing material utilization and reducing tungsten resource consumption.

Table 1: Main Regrinding Processes and Characteristics of Indexable Inserts

Regrinding Process Name

Regrinded Blade Type

Principle

Vantagens Disadvantages
Local Regrinding Same Model Blades Observe worn areas of old blades for local regrinding Simple method, low cost Cannot completely eliminate original damage and wear marks
Small Specification Regrinding Similar Small Specification Blades Regrind old blades partially or completely, reduce size, convert to similar small specification blades Remains standard size after regrinding, can be installed on standard tool holders, effectively eliminates original wear and damage marks Large amount of regrinding required
Modified Regrinding Modified Blades Regrind blades partially or completely, change the shape and size for other purposes Relatively simple process, low cost Cannot completely eliminate original damage and wear, lower lifespan
Fixed Position Regrinding Grind specific areas of old blades into one or more shapes to improve cutting edges Fixed positioning, high interchangeability, provides specific shapes and sharp cutting edges Proprietary design

Recycling and Utilization of Carbide?Tool Materials

Tungsten resources in tungsten ore are primary, non-renewable resources, while tungsten resources in carbide?tool materials are secondary, renewable resources. As the supply of tungsten resources becomes increasingly tight, awareness of recycling tungsten resources from old carbide?tools is growing. Currently, the main methods for recycling tungsten resources from carbide?tool materials include melting, mechanical crushing, and electrolytic methods, with melting methods encompassing both niter and zinc melting methods. Zinc melting and electrolytic methods are currently the most widely used. Table 2 outlines the main methods and characteristics for recycling tungsten resources in carbide?materials. Additionally, other methods for recycling tungsten resources in carbides include high-temperature treatment and acid leaching.

Table 2: Main Methods and Characteristics of Tungsten Resource Recovery in Hard Alloy Materials

Method Name Recovery Principle Vantagens Disadvantages
Niter Method Melt waste materials and niter at 900–1200°C, then immerse in water; tungsten enters solution as Na?WO?, then WO? or APT is produced from the solution; cobalt remains in the residue for recovery Early application, wide adaptability, low investment, fast reaction Long process, low recovery rate, high cost, environmental pollution
Zinc Melting Method At high temperatures, zinc forms a zinc-cobalt alloy with cobalt in carbides, causing the phase to expand; zinc is removed by vacuum distillation, resulting in a porous body, which is then crushed and milled to obtain tungsten-cobalt mixed powder Widely used, relatively mature, short process, tungsten recovery rate reaches 95% Product performance is low, high production costs and energy consumption
Mechanical Crushing Method Clean the surface of carbide?waste, then mechanically crush and mill to obtain a carbide?mixture Short process, low cost, high efficiency, low energy consumption Requires special equipment and technology
Electrolytic Method Use waste carbide?as the anode; by controlling the anode potential, cobalt is selectively dissolved into the electrolyte, then treated chemically to produce cobalt oxide; tungsten carbide is produced as anode sludge, which can be deoxidized to obtain tungsten carbide powder Simple process, low cost, high efficiency, low labor intensity, minimal pollution Generally suitable for waste with cobalt content greater than 8%

 

Foreign tool companies have long conducted research and application work on the recycling of worn carbide?tool materials. Sandvik Tooling has launched a recycling initiative aimed at recovering and reusing worn carbide?blades and solid carbide?tools. Reports indicate that approximately one-third of Sandvik’s carbide?products come from recycled materials each year. Similarly, Hitachi Tools in Japan is actively promoting the recycling of worn carbide?materials nationwide.

As a major consumer of carbide?tools, China has the potential to create favorable conditions for the recycling of tungsten resources. While many domestic companies, such as Heyuan Fuma carbide?Co., Ltd. and Xiamen Jinlu Special Alloy Co., Ltd., have begun recycling carbide?tool materials, overall awareness of tungsten resource recycling remains low, with a relatively low recycling rate and the quality of recycled tungsten resources needing further improvement.

carbide tool

Research and Development of New Carbide?Tool Materials

With the continuous emergence of new processing materials and technologies, new tool materials are also being developed. The research of carbide?tool materials with lower tungsten content plays a positive role in the conservation and sustainable development of tungsten resources. Currently, steel-bonded carbide?materials and functionally graded carbide?materials are two major research hotspots.

Steel-bonded carbide?is a new type of carbide?material developed in recent years. It consists of one or more carbides (such as TiC, WC) as the hard phase (about 30% to 50% content) and high-speed steel or alloy steel as the bonding phase, made through powder metallurgy. Steel-bonded carbides inherit the advantages of both carbides and steel, offering high hardness and wear resistance while also providing high strength, ductility, and weldability typical of steel. This material fills the gap between the two. Steel-bonded carbides can be used to manufacture complex tools like drill bits, milling cutters, pull tools, and hob cutters, showing significant effects in machining stainless steel, heat-resistant steel, and non-ferrous alloys.

Functionally graded carbide?materials are also a hot research topic globally and represent the future direction of modern carbides. These materials exhibit a systematic and uneven distribution of chemical composition across different sections, utilizing compositional gradients to endow different parts of the material with varying properties. This helps to resolve the inherent conflict between hardness and toughness in carbides, resulting in superior comprehensive performance.

The application of steel-bonded carbide?materials and functionally graded carbide?materials in tool fields has achieved remarkable results. For instance, the “Christmas tree” milling cutter used for machining turbine rotor grooves is made of steel-bonded carbide. Sandvik’s functionally graded carbide?materials have been widely used in products such as coating blades and mining alloys, which operate under very harsh conditions. Although China has researched steel-bonded carbide?and functionally graded carbide?materials for over a decade, breakthroughs in core technologies and equipment are still needed, making this a focus for future research.

Promotion of Other Tool Materials

Despite the strong versatility and broad applicability of carbide?tools, no universal tool exists; each type of tool material has its limitations. Promoting the use of other tool materials in their respective fields can reduce dependence on and excessive use of carbide?tools, contributing positively to the sustainable development of tungsten resources in the carbide?tool industry.

In addition to carbide?materials, other tool materials include high-speed steel, ceramic tools, and superhard materials. High-speed steel, especially high-performance powder metallurgy high-speed steel, remains important in complex forming tools; ceramic tools excel in machining cast iron and hardened steel; diamond PCD tools show clear advantages in processing non-ferrous metals and non-metallic materials; PCBN tools are primarily used for machining steel and cast iron materials.

Foreign tool application companies are far ahead of China in the use of other tool materials. For example, GE in the U.S. has achieved milling speeds of 4000 m/min when using PCD face mills on aluminum engine cylinder heads.? In recent years, the development of foreign ceramic tools has been particularly rapid; Sandvik has achieved significant success with whisker and alumina ceramic tools in high-feed turning and milling of high-temperature alloys.

Conclus?o

China’s tungsten resource supply is becoming increasingly scarce. To reduce tungsten resource consumption and ensure sustainable development in the carbide?tool industry, it is essential to actively develop high-grade carbide?tools, enhance tool performance, improve material utilization rates, recycle worn carbide?tool materials, and continuously research new carbide?tool materials. Additionally, there should be strong promotion of the use of other tool materials in relevant application fields.

Deixe uma resposta

O seu endere?o de e-mail n?o será publicado. Campos obrigatórios s?o marcados com *

亚洲国产精品不卡毛片-青青青视频手机在线观看-在线视频中文字幕人妻-亚洲永久精品免费在线| 亚洲精品色国语对白在线-黄片毛片av在线免费观看-久久精品有码av天堂-日韩一区二区三区高清视频| 亚洲中文字幕高清乱码毛片-国产成人午夜福利精品-久久毛片绝黄免费观看-国产亚洲成性色av人片在线观| 中文字幕乱码一区在线观看-少妇高潮视频免费观看-日本一区二区三区不卡在线-国产精品网红在线播放| 成人高清视频在线播放-91麻豆免费观看视频-久久婷香五月综合色吧-自拍自产精品免费在线| 四虎在线观看永久免费-久久精品熟女亚洲av香蕉-av国内精品久久久久影院三级-亚洲国产一区二区三区av| 九九热这里只有精品在线免费视频-色一情一乱一乱一十九区-国产午夜福利视频在线观看-久草免费手机在线视频观看| 日韩成人大片一区二区三区-国产一级淫片av免费-18禁免费观看网站入口-国产黄色特级片一区二区三区| 麻豆视频传媒在线免费看-亚洲性码不卡视频在线-岛国av色片免费在线观看-久久久国产精品视频大全| 男女公园上摸下揉视频-日本精品视频一二区-激情久久综合久久人妻-伊人成人综合在线视频| 成人一区二区三区激情视频-久久一区二区免费蜜桃-钢琴考级三级咏叹调视频-亚洲性感毛片在线视频| 日韩美女一区二区三区不卡顿-日本女优搜查官中文字幕-国产精品中文字幕自拍-欧美日韩天天干夜夜操| 国产精品午夜免费福利-亚洲香蕉视频网在线观看-四虎私人福利妞妞视频-91国产丝袜在线观看| 色人阁免费在线视频观看-中文字幕中文字幕日韩一区-91麻豆成人精品国产-亚洲精品成人剧情在线观看| 国产精品中文字幕久久-国产精品一区二区在线免费-韩国午夜三级一区二区-亚洲国产成人精品一区刚刚| a在线观看视频在线播放-81精品人妻一区二区三区蜜桃-国产午夜福利片一级做-在线观看亚洲视频一区二区| 四虎在线观看永久免费-久久精品熟女亚洲av香蕉-av国内精品久久久久影院三级-亚洲国产一区二区三区av| 日韩熟女人妻中文字幕-亚洲视频自拍偷拍免费-91国内精品久久精品一本-日韩高清一区二区不卡视频| 国产精品亚洲精品午夜-欧美日韩成人精品久久二区-自拍偷拍福利视频在线观看-91精品蜜桃一区二区三区| 少妇无套内谢免费视频-色婷婷性感在线观看视频-国产免费黄色一级大片-国产亚洲精品麻豆一区二区| 国产精品剧情一区在线观看-精品伊人久久大香线蕉-一起草视频在线播放观看-精品少妇人妻av一区二区蜜桃| 国产黄片一区二区在线-国产精品99国产精品久久-国产,欧美视频免费看-长腿丝袜国产在线观看| 精品人妻中文字幕有码在线-亚洲欧美一区二区成人精品久久久-亚洲第一人伊狼人久久-亚洲国产欧美精品在线观看| 亚洲精品人妻中文在线-国产成人精品视频三级-麻豆视频黄片在线免费观看-亚洲性色精品一区二区在线| 国产精品大片中文字幕-国产丝袜av一区二区免费-亚洲av巨作一级精品-国产成人综合亚洲欧美天堂| 能看免费欧美一级黄片-男女视频网站免费精品播放-日本高清在线一区二区三区-熟女少妇免费视频网站观看| 亚洲国产日韩欧美性生活-开心激情五月婷婷丁香-久久精品国产亚洲av热片-国产日产精品视频一区二区三区| 成年人有性生活正常吗-亚洲熟女熟妇五十路熟女熟妇-亚洲精品一区二区高清在线-日本视频在线播放91| 国产成人综合中文字幕-中文字幕午夜五月一二-在线视频精品一区二区三区-久久96精品国产亚洲av蜜臀| 熟女人妻中文字幕在线视频-91久久成人精品探花-国产精品黄色一区二区三区-99精品国产99久久久久97| 亚洲精品一区网站在线观看-亚洲精品一区二区三区婷婷月-国产aⅴ精品一区二区三区久久-在线综合亚洲中文精品| 亚洲熟妇av熟妇在线-国产精品午夜福利清纯露脸-粉嫩av在线播放一绯色-日产精品久久久久久蜜臀| 国产精品自拍射精视频-蜜桃视频在线中文字幕-黑人泄欲一区二区三区-国内少妇无套内射精品视频| 蜜桃臀欧美日韩国产精品-最近欧美日韩一区二区-亚洲综合成人一区二区三区-免费五十路熟妇在线视频| 在线十八禁免费观看网站-久久99久国产精品黄毛片色诱-日韩高清av在线观看-亚洲黄香蕉视频免费看| 欧美激情一级欧美精品-国产一区二区在线免费视频观看-日韩不卡视频免费在线观看-国产成人深夜在线观看| 国产一级特黄高清大片-欧美精品一区二区三区精品-久久亚洲av成人网人人动漫-日本熟女网站一区二区三区| 亚洲国产日韩精品欧美银杏-99久久免费热在线精品-国产精品免费不卡av-国产精品老熟女视频一区二区| 亚洲天堂男人的天堂在线-亚洲激情欧美日韩在线-国产av剧情精品老熟女-色老头与人妻中文字幕视频| 亚洲国产综合成人久久-日本一区二区三区精彩视频-激情四射五月天亚洲婷婷-人妻高清视频一区二区三区| 国产视色精品亚洲一区二区-激情艺术中心国产精品-国产农村一级特黄真人片-免费观看午夜视频在线|